• 제목/요약/키워드: Use-dependent plasticity

검색결과 15건 처리시간 0.022초

입자보강 복합재료에서 크기효과 -Size-Dependent 소성역학 (The Size Effect in Particulate Composite Materials - Size - Dependent Plasticity)

  • 김승호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.167-170
    • /
    • 2005
  • This paper briefly reviews various existing methods to account for the effect of particle size on mechanical properties of particulate metal matrix composites. A simple and easy method is to use a size-dependent constitutive equation for the matrix. The suggested method does not require the development of a new computational algorithm and is compatible with any standard finite element software. Finite element analyses have been carried out to show how the deformation behavior of a metal matrix composite changes as the particle size and volume fraction are varied.

  • PDF

A NUMERICAL ALGORITHM FOR ELASTO-PLASTIC MATERIAL DEFORMATION

  • HWANG HYUN-CHEOL
    • 대한수학회논문집
    • /
    • 제20권3호
    • /
    • pp.589-602
    • /
    • 2005
  • We present the numerical algorithm for the model for high-strain rate deformation in hyperelastic-viscoplastic materials based on a fully conservative Eulerian formulation by Plohr and Sharp. We use a hyperelastic equation of state and the modified Steinberg and Lund's rate dependent plasticity model for plasticity. A two-dimensional approximate Riemann solver is constructed in an unsplit manner to resolve the complex wave structure and combined with the second order TVD flux. Numerical results are also presented.

작업치료 임상에서 뇌졸중 환자의 상지기능 향상을 위한 가상현실 치료의 유용성에 관한 고찰 (Feasibility of Virtual Reality for Enhancement of Upper Extremity Function Post Stroke)

  • 권재성;양노열
    • 재활치료과학
    • /
    • 제1권2호
    • /
    • pp.35-40
    • /
    • 2012
  • 본 연구에서는 가상현실 치료가 뇌졸중 환자의 뇌 가소성을 동반한 상지기능 향상에 미치는 영향을 알아보고 강도 높은 가상현실 훈련이 뇌졸중 환자의 상지기능 향상을 위한 집중치료로써 임상적으로 유용한 훈련인지 알아보고자 하였다. 뇌졸중 환자에게 있어 사용-의존성 즉 운동 강도와 반복은 마비 측 사지의 운동 기능향상에 중요한 치료적 요소이다. 최근에는 상지의 지속적 사용을 통한 뇌-가소성에 기반한 변화를 유도할 수 있는 치료방법으로 가상현실 치료가 대두되었다. 가상현실 치료는 재활 임상환경에서 운동기능 향상을 위한 훈련강도와 반복을 제공할 수 있는 기술적 방법으로 채택되기 시작하였다. 특히 뇌졸중 환자의 상지 기능을 향상시키기 위한 치료적 유용성 측면에서는 강도 높은 반복적 훈련이 가능하다는 것과 게임 같은 형식으로 높은 동기부여가 가능하다는 것, 실제 수행을 통한 다중감각적 피드백 제공, 상호작용이 가능한 과제지향적 치료가 가능하다는 장점을 가지고 있다. 임상 환경에서 작업치료와 더불어 부가적으로 가상현실 치료를 실시하는 것은 뇌졸중 환자의 상지 기능회복을 더욱 촉진할 것이다.

Coupling non-matching finite element discretizations in small-deformation inelasticity: Numerical integration of interface variables

  • Amaireh, Layla K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • 제8권1호
    • /
    • pp.71-93
    • /
    • 2019
  • Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.

판재의 성형한계 결정을 위한 시간의존적 방법의 제안 (Proposal of a Time-dependent Method for Determining the Forming Limit of Sheet Metal)

  • 김성곤;김형종
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.115-122
    • /
    • 2018
  • Most domestic and international standards on the forming limit diagram (FLD) including ISO 12004-2, use a 'position-dependent method,' which determines the forming limit from a strain distribution measured on the specimen after necking or fracture. However, the position-dependent method has inherent problems such as the incidence of asymmetry of a strain distribution, the estimation of missing data near fracture, the termination time of test, and the deformation due to the new stress equilibrium after a fracture, which is blamed for causing sometimes a significant lab-to-lab variation. The 'time-dependent method,' which is anticipated to be a new international standard for evaluating the forming limit, is expected to greatly improve these intrinsic disadvantages of the position-dependent method. It is because the time-dependent method makes it possible to identify and accurately determine the forming limit, just before the necking point from the strain data as continuously measured in a short time interval. In this study, we propose a new time-dependent method based on a Gaussian fitting of strain acceleration with the introduction of 'normalized correlation coefficient.' It has been shown in this study that this method can determine the forming limit very stably and gives a higher value, which is in comparison with the results of the previously studied position-dependent and time-dependent methods.

점소성 이론에 의한 변형률 속도 민감도에 대한 연구 (A Study on Strain Rate Sensitivity by Unified Viscoplasticity)

  • 호괄수
    • 소성∙가공
    • /
    • 제13권7호
    • /
    • pp.600-607
    • /
    • 2004
  • This paper addresses a viscoplastic constitutive model that allows a consistent way of modeling positive and negative rate sensitivities of flow stress concerned with dynamic strain aging. Based on the concept of continuum mechanics, a phenomenological constitutive model includes the use of a yield surface within the framework of unified viscoplasticity theory. To model negative rate sensitivity, rate-dependent back stress is introduced and flow stress in fully developed inelastic deformation regime is thus decomposed into the plastic contribution of rate independency and the viscous one of rate dependency.

수치 및 실험적 접근을 통한 다점무금형성형기술 연구 (Study on Multi-point Dieless Forming Technology Based on Numerical and Experimental Approach)

  • 허성찬;서영호;구태완;송우진;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.220-223
    • /
    • 2008
  • Large curved plate blocks are widely used to construct hull structure in shipbuilding industry. Most curved plates are manufactured by using manual method called as line heating that use deformation caused by residual stress after local heating along a line which is perpendicular to the curvature direction. However, its working environment is poor and its formability is totally dependent on an experienced technician. In view of that, multi-point dieless forming (MDF) technology that use reconfigurable punch arrays instead of one piece die is proposed in this study. The MDF process is based on a concept of equivalent die surface made by numbers of punches which has round tip at the end of it. In this study, numerical simulation for common curvature type such as saddle shape was carried out. In addition, experiments in the plate forming process were also conducted to compare with the numerical results in view of final configuration. Consequently, it was noted that the proposed dieless forming method has considerable feasibility to substitute the new process for conventional manual method.

  • PDF

마그네슘 판재를 위한 온도 의존형 C-H/V 구성 모델에 관한 연구 (The Temperature Dependent C-H/V Constitutive Modeling for Magnesium Alloy Sheet)

  • 박종현;이종길;김헌영
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.221-227
    • /
    • 2012
  • The automotive and electronic industries have seriously considered the use of magnesium alloys because of their excellent properties such as strength to weight ratio, EMI shielding capability, etc. However, it is difficult to form magnesium alloys at room temperature because of the mechanical deformation related to twinning. Hence, magnesium alloys are normally formed at elevated temperatures. In this study, a temperature dependent constitutive model, the C-H/V model, for the magnesium alloy AZ31B sheet is proposed. A hardening law based on nonlinear kinematic and H/V(Hollomon/Voce) hardening model is used to properly characterize the Bauschinger effect and the stabilization of the flow stress. Material parameters were determined from a series of uni-axial cyclic experiments(C-T-C) with the temperature ranging between 150 and $250^{\circ}C$. The developed models are fit to experimental data and a comparison is made.

신경가소성 원리를 이용한 강제유도운동치료에 대한 고찰: 경직성 편마비형 뇌성마비 아동을 대상으로 (A Review of the Plasticity and Constraint Induced Movement Therapy : Children With Spastic Hemiplegic Cerebral Palsy)

  • 조상윤
    • 재활치료과학
    • /
    • 제2권1호
    • /
    • pp.13-23
    • /
    • 2013
  • 강제유도운동치료는 최근 신경재활 분야에서 가장 주목 받고 있는 상지 재활 치료방법 중 하나로 하루 6시간씩 주 5일 2주간 강도 높은 훈련을 환측 팔에 제공하고, 건측의 사용을 억제하기 위해 깨어 있는 시간의 90%를 구속하는 치료방법이다. 최근에는 전통적인 강제유도운동치료의 임상적 한계를 바탕으로 수정된 강제유도운동치료가 많이 적용되고 있다. 수정된 강제유도운동치료는 하루 5시간씩 주 5일, 10주간 건측을 억제하고 하루 30분간 손상측을 치료하는 방법이다. 이는 일상생활 수행 평가인 소아 운동 활동 측정표(Pediatric Motor Activity Log; PMAL)와 상지 질적 평가(Quality of Upper Extremities Skills Test; QUEST), 환측의 상지 기능을 평가하는 멜버른 상지 평가(Melbourne Assessment of Unilateral Upper Limb Function; MAULF), 환측과 건측의 양손 협응을 보기 위한 Assisting Hand Assessment(AHA)를 통해 강제유도운동치료의 효과를 입증하였다. 본 고찰에서는 강제유도운동치료 적용 후, 신경학적 변화를 살펴본 연구를 중점적으로 분석하였다. 경직성 편마비형 뇌성마비 아동에게 강제유도운동치료 또는 수정된 강제유도운동치료를 적용한 결과, 신체부분의 움직임의 양에 따라 대뇌피질에 나타나는 신체 부위의 크기가 변한다는 것을 보여주었다. 또한 반대측 운동피질의 활성을 증가시켜주고, 동측 피질의 활성을 감소시켜 신경재조직에 영향을 주기 때문에 강제유도운동치료는 신경가소성의 원리를 이용한 상지 재활 치료 방법이라 하겠다.

유한요소법을 이용한 분말야금 공정 해석 및 설계 (Analysis and Design of Powder Metallurgy Process using Finite Element Method)

  • 권영삼;이민철;정성택;정석환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.241-244
    • /
    • 2005
  • Though the history of finite element analysis in field of powder metallurgy is not short, industrial engineer is still being dependent on the trial and error approach based on engineer's experience in selecting process conditions. This problem is mainly due to the difficulty in establishing models for the behavior of a powder compact during compaction and sintering as well as finding material parameters for the models and the absence of CAE software with which industrial engineer can easily investigate the effect of process conditions on the quality of product. Therefore, we established very simple and cheap procedure to find material parameters for powder compaction behavior and implemented it in self-developed commercial CAE software for powder metallurgy, PMsolver. Basically, the development strategy of PMsolver lies on simplification and convenience so as for industrial engineers to use it with least training. Using PMsolver, optimal process conditions were found for some geometry and powders. Prior to process condition design, the accuracy of finite element analysis was verified.

  • PDF