• Title/Summary/Keyword: Use of Smart Devices

Search Result 788, Processing Time 0.028 seconds

An Empirical Study on Intentions to Use of Smart TV (스마트 TV 이용의도에 관한 실증 연구)

  • Lee, Dong-Gun;Lee, Sang-Joon;Choi, Beom-Jin
    • Journal of Digital Convergence
    • /
    • v.10 no.4
    • /
    • pp.107-118
    • /
    • 2012
  • Smart TV is expected to take the center stage of the recent "smartization" trend in IT and consumer electronics as it performs a hub for various smart IT devices, such as smart phone, smart pad, PC, etc. It is distinct from traditional TVs or even IPTVs in the sense that it provides immersive and interactive experiences via apps downloaded through TV app store. Smart TV could serve as a new intermediary device between other smart devices and the Internet. While it started experiencing a rapid growth, little research has been conducted to understand this emerging technology in terms of its user acceptance and adoption by users. The current research attempts to fill the gap in the field by examining factors and processes for this new technology to be adopted by users. This paper draws on theories of IT acceptance and use, such as the "Unified Theory of Acceptance and Use of Technology", to investigate factors affecting "intention to use" of smart TV. The proposed research model is analyzed using the structural equation modeling approach. Findings show that such factors as innovativeness, switching cost, switching benefit, service interface, and user interface affect users' intention to use smart TV, through effort expectation, performance expectation, and social influence. Theoretical and managerial implications are discussed.

User Density Estimation System at Closed Space using High Frequency and Smart device

  • Chung, Myoungbeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.49-55
    • /
    • 2017
  • Recently, for safety of people, there are proposed so many technologies which detect density of people at the specific place or space. The representative technology for crowd density estimation was using image analysis method from CCTV images. However, this method had a weakness which could not be used and which's accuracy was lower at the dark or smog space. Therefore, in this paper, to solve this problem, we proposed a user density estimation system at closed space using high frequency and smart device. The system send inaudible high frequencies to smart devices and it count the smart devices which detect the high frequencies on the space. We tested real-time user density with the proposed system and ten smart devices to evaluate performance. According to the testing results, we confirmed that the proposed system's accuracy was 95% and it was very useful. Thus, because the proposed system could estimate about user density at specific space exactly, it could be useful technology for safety of people and measurement of space use state at indoor space.

Vulnerability Analysis Model for IoT Smart Home Camera

  • Aljahdali, Asia Othman;Alsaidi, Nawal;Alsafri, Maram
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.229-239
    • /
    • 2022
  • Today's Internet of Things (IoT) has had a dramatic increase in the use of various daily aspects. As a consequence, many homes adopt IoT technology to move towards the smart home. So, the home can be called smart when it has a range of smart devices that are united into one network, such as cameras, sensors, etc. While IoT smart home devices bring numerous benefits to human life, there are many security concerns associated with these devices. These security concerns, such as user privacy, can result in an insecure application. In this research, we focused on analyzing the vulnerabilities of IoT smart home cameras. This will be done by designing a new model that follows the STRIDE approach to identify these threats in order to afford an efficient and secure IoT device. Then, apply a number of test cases on a smart home camera in order to verify the usage of the proposed model. Lastly, we present a scheme for mitigation techniques to prevent any vulnerabilities that might occur in IoT devices.

System Design and Service Scenario for the Second Screen Service

  • Park, Joo Hyun;Lim, Soon-Bum
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.111-118
    • /
    • 2016
  • Today, the proliferation of various mobile devices, such as smart phones and tablet PC, brought changes in the existing TV viewing behavior. People use smart devices as secondary device while watching TV. Researches on a wide range of services linked with second-screen devices around the smart TV in the home network have been actively conducted. While there exist several Web-related technologies for connections between devices, specialized techniques for a second screen service are quite insufficient. There are still some problems related to the display of contents from multiple devices and the efficient transfer of these contents. Considering the characteristics of broadcasting systems In this study, we focus on a second screen service that permits a dynamic transfer of contents by connecting a television (TV) with mobile devices. Here, we propose a second screen service model to enable the personalization of TV contents by combining the existing broadcasting and Web-related techniques.

UX Analysis based on TR and UTAUT of Sports Smart Wearable Devices

  • Seol, Suhwang;Ko, Daesun;Yeo, Insung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4162-4179
    • /
    • 2017
  • The main purpose of this research is to investigate relationships between the significant control factors on acceptance intention to User Experience (UX) sports smart wearable devices by applying Technology Readiness (TR) and Unified Theory of Technology (UTAUT). Research survey targeted on users of golf smart devices in Seoul. A total 534 questionnaires were collected and used for testing hypotheses. Methods to analyze the data included frequency analysis, reliability analysis, confirmatory factor analysis, correlation analysis, and structural equation modeling in accordance with the purpose of the study by using SPSS and AMOS. The results are as follows; First, positive TR had a significantly positive effect on social influence, effort expectancy, facilitating conditions, perceived enjoyment, performance expectancy. Second, negative TR had a significant negative effect on performance expectancy, social influence, facilitating conditions, perceived enjoyment. Third, TR had a no significantly effect on behavioral intention. Fourth, performance expectancy, perceived enjoyment and facilitating conditions had a significantly positive effect on behavioral intention. Fifth, behavioral intention had a significantly positive effect on use behavior. Thus it became crucial to identify the difference in acceptance intention models per each products are as follows. Positive TR of golf-related mobile application users has a positive effect on both technology acceptance belief and acceptance intention, whereas negative TR has no statistically significant effect on technology acceptance belief nor acceptance intention.

A Study on the Standard-interfaced Smart Farm Supporting Non-Standard Sensor and Actuator Nodes (비표준 센서 및 구동기 노드를 지원하는 표준사양 기반 스마트팜 연구)

  • Bang, Dae Wook
    • Journal of Information Technology Services
    • /
    • v.19 no.3
    • /
    • pp.139-149
    • /
    • 2020
  • There are now many different commercial weather sensors suitable for smart farms, and various smart farm devices are being developed and distributed by companies participating in the government-led smart farm expansion project. However, most do not comply with standard specifications and are therefore limited to use in smart farms. This paper proposed the connecting structure of operating non-standard node devices in smart farms following standard specifications supporting smart greenhouse. This connecting structure was proposed as both a virtual node module method and a virtual node wrapper method. In addition, the SoftFarm2.0 system was experimentally operated to analyze the performance of the implementation of the two methods. SoftFarm2.0 system complies with the standard specifications and supports non-standard smart farm devices. According to the analysis results, both methods do not significantly affect performance in the operation of the smart farm. Therefore, it would be good to select and implement the method suitable for each non-standard smart farm device considering environmental constraints such as power, space, distance of communication between the gateway and the node of the smart farm, and software openness. This will greatly contribute to the spread of smart farms by maximizing deployment cost savings.

Design of Image Generation System for DCGAN-Based Kids' Book Text

  • Cho, Jaehyeon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1437-1446
    • /
    • 2020
  • For the last few years, smart devices have begun to occupy an essential place in the life of children, by allowing them to access a variety of language activities and books. Various studies are being conducted on using smart devices for education. Our study extracts images and texts from kids' book with smart devices and matches the extracted images and texts to create new images that are not represented in these books. The proposed system will enable the use of smart devices as educational media for children. A deep convolutional generative adversarial network (DCGAN) is used for generating a new image. Three steps are involved in training DCGAN. Firstly, images with 11 titles and 1,164 images on ImageNet are learned. Secondly, Tesseract, an optical character recognition engine, is used to extract images and text from kids' book and classify the text using a morpheme analyzer. Thirdly, the classified word class is matched with the latent vector of the image. The learned DCGAN creates an image associated with the text.

Intelligent Home appliances Power Control using Android and Arduino (안드로이드와 아두이노를 이용한 지능형 가전제품 전력 컨트롤)

  • Park, Sung-hyun;Kim, A-Yong;Kim, Wung-Jun;Bae, Keun-Ho;Yoo, Sang-keun;Jung, Hoe-kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.854-856
    • /
    • 2014
  • Has been released of make it possible to control the using for smart devices of a wide variety home appliances and electronics in smart appliances in accordance with the one person multi devices. In addition, is increasing rapidly for the number of the product on cleaning robot and refrigerator, air conditioning, TV, etc. these devices are using the implement up DLNA system. And at home and abroad for development and has provided with Iot and Alljoyn such systems. But currently using home appliances or electronic devices of there are a lot of the operating system non installed than the installed products. In addition, smart appliances do not use for user than buying existing electronic products a lot more. In addition, more occur for smart appliances of that do not use for the user on smart appliances rather than buying existing electronics. In this paper, Suggested and implemented for system of control such as smart devices to existed home appliance on not have an operating system, Using mobile device for want users to quantify the data to transfer from arduino board.

  • PDF

Development and Evaluation of Smart Secondary Controls Using iPad for People with Hemiplegic Disabilities

  • Song, Jeongheon;Kim, Yongchul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.85-101
    • /
    • 2015
  • Objective: The purpose of this study was to develop and evaluate smart secondary controls using iPad for the drivers with physical disabilities in the driving simulator. Background: The physically disabled drivers face problems in the operation of secondary control devices that accept a control input from a driver for the purpose of operating the subsystems of a motor vehicle. Many of conventional secondary controls consist of small knobs or switches that physically disabled drivers have difficulties in grasping, pulling or twisting. Therefore, their use while driving might increase distraction and workload because of longer operation time. Method: We examined the operation time of conventional and smart secondary controls, such as hazard warning, turn signal, window, windshield wiper, headlights, automatic transmission and horn. The hardware of smart secondary control system was composed of iPad, wireless router, digital input/output module and relay switch. We used the STISim Drive3 software for driving test, customized Labview and Xcode programs for interface control of smart secondary system. Nine subjects were involved in the study for measuring operation time of secondary controls. Results: When the driver was in the stationary condition, the average operation time of smart secondary devices decreased 32.5% in the normal subjects (p <0.01), 47.4% in the subjects with left hemiplegic disabilities (p <0.01) and 38.8% in the subjects with right hemiplegic disabilities (p <0.01) compared with conventional secondary devices. When the driver was driving for the test in the simulator, the average operation time of smart secondary devices decreased 36.1% in the normal subjects (p <0.01), 41.7% in the subjects with left hemiplegic disabilities (p <0.01) and 34.1% in the subjects with right hemiplegic disabilities (p <0.01) compared with conventional secondary devices. Conclusion: The smart secondary devices using iPad for people with hemiplegic disabilities showed significant reduction of operation time compared with conventional secondary controls. Application: This study can be used to design secondary controls for adaptive vehicles and to improve the quality of life of the people with disabilities.

A Study on Log Collection to Analyze Causes of Malware Infection in IoT Devices in Smart city Environments

  • Donghyun Kim;Jiho Shin;Jung Taek Seo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.17-26
    • /
    • 2023
  • A smart city is a massive internet of things (IoT) environment, where all terminal devices are connected to a network to create and share information. In accordance with massive IoT environments, millions of IoT devices are connected, and countless data are generated in real time. However, since heterogeneous IoT devices are used, collecting the logs for each IoT device is difficult. Due to these issues, when an IoT device is invaded or is engaged in malicious behavior, such as infection with malware, it is difficult to respond quickly, and additional damage may occur due to information leakage or stopping the IoT device. To solve this problem, in this paper, we propose identifying the attack technique used for initial access to IoT devices through MITRE ATT&CK, collect the logs that can be generated from the identified attack technique, and use them to identify the cause of malware infection.