• 제목/요약/키워드: Use of Artificial Intelligence

검색결과 1,005건 처리시간 0.024초

인공지능 기능성이 온라인 상점의 이미지와 지속사용의도에 미치는 영향 연구: 자원기반관점을 중심으로 (Effects of Artificial Intelligence Functionalities on Online Store'S Image and Continuance Intention: A Resource-Based View Perspective)

  • 보웬;진윤선;권오병
    • 한국전자거래학회지
    • /
    • 제25권2호
    • /
    • pp.65-98
    • /
    • 2020
  • 온라인 상점에서 인공 지능 기술의 채택이 지속적으로 증가하는 중이다. 그러나 각 인공지능 기능이 온라인 쇼핑에 대한 소비자의 지속사용의도에 어떠한 영향을 미치는지 여부를 실증분석한 연구는 거의 없다. 따라서 본 연구의 목적은 실증연구를 통해 온라인 상점의 지속사용의도에 인공지능의 주요 기능이 미치는 영향을 이해하는 것이다. 특히 온라인 상점 자원으로서의 인공지능 기능이 자원 기반관점에서 온라인 상점의 차별성에 어떠한 영향을 미치는지에 초점을 맞추고자 한다. 또한 인공 지능 기능과 지속사용의도 간의 매개 효과로서 온라인 상점 이미지를 고려하였다. 설문은 중국 소비자들을 대상으로 실시하였으며 분석 결과 온라인 상점에서 인공지능 기능의 존재가 자원 기반 관점에서 지속가능성에 긍정적인 영향을 미친다는 것을 알 수 있었다. 또한 인공지능 기능은 제품 및 서비스의 이미지에 긍정적인 영향을 미치며, 인공지능 기능에 의한 온라인 상점 사용 의도에 영향을 미치는 방식에 차이가 있음을 발견했다.

AI 기반 지능형 CCTV 이상행위 탐지 성능 개선 방안 (AI-Based Intelligent CCTV Detection Performance Improvement)

  • 류동주;김승희
    • 융합보안논문지
    • /
    • 제23권5호
    • /
    • pp.117-123
    • /
    • 2023
  • 최근 생성형 Artificial Intelligence(이하 AI)와 인공지능에 대한 수요가 높아짐에 따라, 오남용에 대한 심각성이 대두되고 있다. 그러나, 이상행위 탐지를 극대화한 지능형 CCTV는 군과 경찰에서 범죄 예방에 큰 도움이 되고 있다. AI는 인간이 가르쳐준 대로 학습을 수행한 후, 자가 학습을 진행한다. AI는 학습된 결과에 따라 판단을 하기 때문에, 학습 시 특징을 명확하게 이해해야만 한다. 그러나, 인간이 판단하기에도 모호한 이상한 행위와 비정상 행위의 시각적 판단이 어려운 경우가 많다. 이것을 인공지능의 눈으로 학습하기란 매우 어렵고, 학습을 한 결과는 오탐, 미탐 그리고 과탐이 매우 많아진다. 이에 대해 본 논문에서는 AI의 이상한 행위와 비정상 행위의 학습을 명확하게 하기 위한 기준과 방법을 제시하고, 지능형 CCTV의 오탐, 미탐 그리고 과탐에 대한 판단 능력을 최대화 하기 위한 학습 방안을 제시하였다. 본 논문을 통해, 현재 활용 중인 지능형 CCTV의 인공지능 엔진 성능을 극대화가 가능하고, 오탐율과 미탐율의 최소화가 가능할 것으로 기대된다.

초등 환경교육에서 인공지능 프로그래밍 활용 방법 (Methods to Use AI Programing in Environmental Education for Elementary School Curriculum)

  • 이용배
    • 정보교육학회논문지
    • /
    • 제26권5호
    • /
    • pp.407-416
    • /
    • 2022
  • 세계적인 기상이변과 재해로 환경교육에 대한 관심은 높아지고 있지만 아직까지 초등과정에서는 독립 교과가 아니고 여러 교과에서 관련 주제를 다루고 있지만 시간과 내용이 부족한 것이 현실이다. 본 연구에서는 초등학교에서 환경교육과 소프트웨어교육을 융합하는 방법을 개발하였다. 환경교육에서는 분리배출에 대한 주제를 중심으로 인공지능 프로그래밍을 활용하여 학습하고 개발된 인공지능의 도움으로 분리배출을 실천하는 내용을 포함한다. 학습과정에서는 새롭게 개발한 문제인식→기계학습↔인공지능활용→협력활동의 교수-학습 모형을 적용하였으며 학습 후 학생들은 융합학습의 흥미도, 환경교육에의 이해도, 인공지능에 대한 이해도와 향후 인공지능 프로그래밍의 학습 희망에 약 80%이상 긍정적인 답변을 하였다.

생성형 인공지능 시대 지방정부의 역할에 대한 연구: 경기도, 서울시, 뉴욕시 사례연구를 바탕으로 (A Study on the Role of Local Governments in the Era of Generative Artificial Intelligence: Based on Case Studies in Gyeonggi-do Province, Seoul City, and New York City)

  • 이수재;김종배
    • 문화기술의 융합
    • /
    • 제10권3호
    • /
    • pp.809-818
    • /
    • 2024
  • 본 논문은 공공영역에서의 인공지능 기술 적용 사례분석을 통해 지방정부가 사전에 고려해야 할 실천방안을 제안한다. 공공영역에 인공지능 기술을 적용한 사례분석을 위해 국내에는 경기도와 서울시, 그리고 국외에는 미국의 뉴욕시를 대상으로 분석하였다. 본 논문에서 인공지능 기술 적용에 따른 실천방안 분석을 위해 AI Localism 분석 도구를 사용한다. AI Localism 분석도구는 인공지능 기술을 공공영역에 적용 및 확산함에 있어 사전에 지방정부가 인공지능 기술의 적용 원칙 및 권리, 공공조달, 참여, 법률과 정책, 책임과 감독, 투명성, 그리고 문해력의 7개 영역에 대해 정책적으로 분석하는 도구이다. 본 논문에서는 각각의 영역에서 지방정부가 시행하고 있는 인공지능 기술 적용사례를 분석하고, 사례분석을 바탕으로 지방정부가 생성형 인공지능 시대를 주도하기 위해 보완하거나 마련해야 할사항들을 법·제도와 정책, 공공조달, 상호협력, 시민참여 분야로 나누어서 실천방안을 제안한다. 제안한 공공영역에 실천방안들을 통해 생성형 인공지능 시대에서 지방정부가 대국민 공공영역에 적용함으로써 신뢰하고 선도할 수 있는 지방공공 행정서비스 제공이 가능할 것이다

『주역』과 인공지능 (The Zhouyi and Artificial Intelligence)

  • 방인
    • 철학연구
    • /
    • 제145권
    • /
    • pp.91-117
    • /
    • 2018
  • 이 논문의 목적은 "주역"과 인공지능 사이에 존재하는 유사성과 차이점을 밝히려는데 있다. "주역"의 점술은 인류의 가장 오래된 지식체계 가운데 하나이며, 인공지능은 인류가 만들어낸 과학의 발명 가운데서도 최전선에 서 있는 지식체계이다. 양자 사이에는 아무런 연관성이 없는 것처럼 보이지만, 빅 히스토리(Big History)의 관점에서 본다면 "주역"과 인공지능은 기호학적 관점에서 볼 때 다음과 같은 공통점을 지닌다. 첫째, 인공지능과 "주역"은 인공언어를 사용하는 기호 체계에 의지한다. 둘째, 점술과 인공지능을 가능하게 하는 원리는 모방과 재현에 있다. 셋째, 인공지능과 "주역"은 모두 추리 과정을 수행하기 위하여 알고리즘(algorithm)에 의지하며, 그 알고리즘은 이진법(二進法)을 기본적 수단으로 삼는다. 넷째, "주역"과 인공지능은 지식을 획득하기 위한 수단으로 유비(類比)의 방법에 의존한다. 물론 이러한 몇 가지 유사성이 있다고 해서 "주역"이 과학이 될 수 있는 것은 아니다. 그럼에도 불구하고 전혀 거리가 먼 것 같은 두 지식체계 사이에 이러한 공통점이 있다는 것을 발견함으로써 문명의 본질에 관해 중요한 통찰을 얻을 수 있다. "주역"과 인공지능은 미지(未知)의 세계에 대한 새로운 지식을 얻기 위하여 지능을 사용한다. 그러나 우리는 "주역"의 점술의 과정에 개입하는 지능이 어떤 종류의 지능인지 정확하게 알지 못한다. 마찬가지로 인공지능의 성격에 대해서도 아직 잘 알지 못하고 있다. 미지의 주체에 의해 운용되는 지능은 우리에게 신비롭고도 두려운 존재이다. "주역"의 점술이 우리에게 점단(占斷)을 행하는 초월적 주체가 무엇인지에 관해 경외하는 마음을 품게 하였듯이, 기계속에 보이지 않는 인공지능의 주체도 우리를 두렵게 한다. 뿐만 아니라 인공지능의 등장은 의식있는 존재만이 지능을 가질 수 있다고 간주했던 전통철학의 관점에 도전을 던지고 있다. 분명한 것은 기호를 매개로 진행되어 온 문명의 발전 과정이 이제 새로운 단계로 진입하고 있다는 사실이다. 인공지능이 인간의 지능을 능가하는 시점을 특이점(singularity)이라고 하는데, 필자는 이 용어를 구문명(舊文明)과 신문명(新文明)의 경계를 가리키는 임계점(臨界點)이라는 의미로 사용하였다. 소옹(邵雍)의 용어를 빌려서 표현한다면 구문명은 선천(先天)이고, 신문명은 후천(後天)이다. 임계점을 지나면 질적 변화가 일어나 새로운 단계로 진입하며 더 이상 과거로 회귀하지 않는다. 현대 문명은 특이점을 통과했다는 징후를 여러 측면에서 보이고 있다. 후천개벽은 조선 후기의 종교 사상가들에게는 예언이었지만 어느덧 소리 없이 현실로 다가와 이미 우리 곁에 있다.

연구윤리에서 인공지능 관련 이슈와 동향 (Issues and Trends Related to Artificial Intelligence in Research Ethics)

  • 이선희
    • 보건행정학회지
    • /
    • 제34권2호
    • /
    • pp.103-105
    • /
    • 2024
  • 인공지능(artificial intelligence, AI) 기술이 산업 전반으로 빠르게 확산되고 있다. AI를 활용하게 되면서 생기는 윤리적 이슈에 대한 관심도 높아지고 있다. 특히 건강과 생명을 주제로 연구하는 보건의료 분야에서 AI와 관련된 윤리적 이슈는 중요한 주제이다. 연구하고 출판하는 과정에서 AI 도구를 이용하였을 때 주의해야 할 연구윤리적 쟁점을 살펴보고자 한다. 연구과정에서 AI tool을 사용하여 번역하거나 인용하고 문장을 수정하는 과정에서 연구자가 의도하지 않은 표절이 생길 수 있어 주의가 필요하다. 현재 AI에게는 저작권이 부여되지 않기 때문에 AI 도구를 사용하여 생기는 연구윤리적 문제는 저자가 책임질 수밖에 없다. 연구자는 AI 도구를 활용하였을 경우 어떤 도구를 어떻게 활용했는지를 연구논문에 명시하도록 권고된다. 연구과정에서 AI 도구로 인한 연구윤리 쟁점 사례가 축적되어가면 다양한 지침들이 정비될 것으로 예상된다. 연구자는 연구출판과정에서 AI 도구의 사용과 관련된 국제적인 합의와 지침 동향에 대해 지속적으로 관심을 가져야 한다.

A Systematic Mapping Study on Artificial Intelligence Tools Used in Video Editing

  • Bieda, Igor;Panchenko, Taras
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.312-318
    • /
    • 2022
  • From the past two eras, artificial intelligence has gained the attention of researchers of all research areas. Video editing is a task in the list that starts leveraging the blessing of Artificial Intelligence (AI). Since AI promises to make technology better use of human life although video editing technology is not new yet it is adopting new technologies like AI to become more powerful and sophisticated for video editors as well as users. Like other technologies, video editing will also be facilitated by the majestic power of AI in near future. There has been a lot of research that uses AI in video editing, yet there is no comprehensive literature review that systematically finds all of this work on one page so that new researchers can find research gaps in that area. In this research we conducted a statically approach called, systematic mapping study, to find answers to pre-proposed research questions. The aim and objective of this research are to find research gaps in our topic under discussion.

코로나바이러스감염증 2019에서 흉부X선사진 및 CT의 역할과 인공지능의 적용 (Role of Chest Radiographs and CT Scans and the Application of Artificial Intelligence in Coronavirus Disease 2019)

  • 유승진;구진모;윤순호
    • 대한영상의학회지
    • /
    • 제81권6호
    • /
    • pp.1334-1347
    • /
    • 2020
  • 코로나바이러스감염증-19 (coronavirus disease 2019; 이하 COVID-19)는 전 세계적 대유행 질환으로 인류 보건을 위협하고 있다. 흉부 CT 및 흉부X선사진은 COVID-19의 표준 진단검사인 역전사 중합효소 연쇄반응에 더하여 COVID-19 진단 및 중증도 평가에서 중요한 역할을 하고 있다. 본 종설에서는 흉부 CT 및 흉부X선사진의 COVID-19 폐렴에 대한 현재 역할에 대하여 살펴보고 인공지능을 적용한 대표적 초기 연구들과 저자들의 경험을 소개함으로써 향후 활용가치에 대해 살펴보고자 한다.

Deep Learning 기반의 DGA 개발에 대한 연구 (A Study on the Development of DGA based on Deep Learning)

  • 박재균;최은수;김병준;장범
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.18-28
    • /
    • 2017
  • Recently, there are many companies that use systems based on artificial intelligence. The accuracy of artificial intelligence depends on the amount of learning data and the appropriate algorithm. However, it is not easy to obtain learning data with a large number of entity. Less data set have large generalization errors due to overfitting. In order to minimize this generalization error, this study proposed DGA which can expect relatively high accuracy even though data with a less data set is applied to machine learning based genetic algorithm to deep learning based dropout. The idea of this paper is to determine the active state of the nodes. Using Gradient about loss function, A new fitness function is defined. Proposed Algorithm DGA is supplementing stochastic inconsistency about Dropout. Also DGA solved problem by the complexity of the fitness function and expression range of the model about Genetic Algorithm As a result of experiments using MNIST data proposed algorithm accuracy is 75.3%. Using only Dropout algorithm accuracy is 41.4%. It is shown that DGA is better than using only dropout.

A Study on Prediction of Baseball Game Based on Linear Regression

  • LEE, Kwang-Keun;HWANG, Seung-Ho
    • 한국인공지능학회지
    • /
    • 제7권2호
    • /
    • pp.13-17
    • /
    • 2019
  • Currently, the sports market continues to grow every year, and among them, professional baseball's entry income is larger than the rest of the professional league. In sports, strategies are used differently in different situations, and the analysis is based on data to decide which direction to implement. There is a part that a person misses in an analysis, and there is a possibility of a false analysis by subjective judgment. So, if this data analysis is done through artificial intelligence, the objective analysis is possible, and the strategy can be more rationalized, which helps to win the game. The most popular baseball to be applied to artificial intelligence to analyze athletes' strengths and weaknesses and then efficiently establish strategies to ease the competition. The data applied to the experiment were provided on the KBO official website, and the algorithms for forecasting applied linear regression. The results showed that the accuracy was 87%, and the standard error was ±5. Although the results of the experiment were not enough data, it would be possible to effectively use baseball strategies and predict the results of the game if the amount of data and regular data can be applied in the future.