• Title/Summary/Keyword: Usage Volume

Search Result 278, Processing Time 0.031 seconds

Construction of vehicle classification estimation model from the TCS data by using bootstrap Algorithm (붓스트랩 기법을 이용한 TCS 데이터로부터 차종별 교통량 추정모형 구축)

  • 노정현;김태균;차경준;박영선;남궁성;황부연
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.39-52
    • /
    • 2002
  • Traffic data by vehicle classification is difficult for mutual exchange of data due to the different vehicle classification from each other by the data sources; as a result, application of the data is very limited. In Particular. in case of TCS vehicle classification in national highways, passenger car, van and truck are mixed in one category and the practical usage is very low. The research standardize the vehicle classification to convert other data and develop the model which can estimate national highway traffic data by the standardized vehicle classification from the raw traffic data obtained at the highway tollgates. The tollgates are categorized into several groups by their features and the model estimates traffic data by the standardized vehicle classification by using the point estimation and bootstrap algorithm. The result indicates that both of the two methods above have the significant level. When considering the bias of the extreme value by the sample size, the bootstrap algorithm is more sophisticated. Using result of this study, we is expect the usage improvement of TCS data and more specific comparison between the freeway traffic investigation and link volume on freeway using the TCS data.

An Extension of the DBMax for Data Warehouse Performance Administration (데이터 웨어하우스 성능 관리를 위한 DBMax의 확장)

  • Kim, Eun-Ju;Young, Hwan-Seung;Lee, Sang-Won
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.407-416
    • /
    • 2003
  • As the usage of database systems dramatically increases and the amount of data pouring into them is massive, the performance administration techniques for using database systems effectively are getting more important. Especially in data warehouses, the performance management is much more significant mainly because of large volume of data and complex queries. The objectives and characteristics of data warehouses are different from those of other operational systems so adequate techniques for performance monitoring and tuning are needed. In this paper we extend functionalities of the DBMax, a performance administration tool for Oracle database systems, to apply it to data warehouse systems. First we analyze requirements based on summary management and ETL functions they are supported for data warehouse performance improvement in Oracle 9i. Then, we design architecture for extending DBMax functionalities and implement it. In specifics, we support SQL tuning by providing details of schema objects for summary management and ETL processes and statistics information. Also we provide new function that advises useful materialized views on workload extracted from DBMax log files and analyze usage of existing materialized views.

Adsorption Characteristics of Sulfonamide Antibiotic Compounds in GAC Process (GAC 공정에서의 Sulfonamide계 항생물질 흡착특성)

  • Son, Hee-Jong;Jung, Jong-Moon;Roh, Jae-Soon;Yu, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.401-408
    • /
    • 2008
  • Adsorption performance of sulfonamide antibiotic compounds such as sulfadimethoxine(SDM), sulfachloropyridazine(SCP), sulfamethazine(SMT), sulfathiazole(STZ) and sulfamethoxazole(SMX) on granular activated carbon(GAC) was evaluated in this study. The coal-based activated carbon was found to be more effective than other carbons in adsorption of sulfonamide antibiotic compounds. The wood-based activated carbon was less effective than coconut- and coal-based carbon in adsorption nevertheless having larger pore volume and specific surface area than others carbons. The maximum adsorption capacities(X/M) of coal-based activated carbon for the five sulfonamide species was 1.3$\sim$1.5 and 1.8$\sim$2.1 times larger than coconut- and wood-based activated carbon, respectively. Carbon usage rates (CUR) of coal-, coconut- and wood-based activated carbons for SCP were 3.55 g/day, 4.29 g/day and 6.47 g/day, respectively. Similar results were obtained in the adsorption of the rest four sulfonamide species. It is concluded that coal-based activated carbon could removed the sulfonamide antibiotic compounds better than other material-based activated carbons.

Effects of Activated Carbon Types and Service Life on Adsorption of Tetracycline Antibiotic Compounds in GAC Process (활성탄 재질 및 사용연수에 따른 Tetracycline계 항생물질 흡착특성)

  • Son, Hee-Jong;Jung, Jong-Moon;Hwang, Young-Do;Roh, Jae-Soon;Yu, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.925-932
    • /
    • 2008
  • Adsorption performance of tetracycline antibiotic compounds such as tetracycline(TC), oxytetracycline(OTC), chlortetracycline (CTC) and minocycline(MNC) on granular activated carbon(GAC) was evaluated in this study. The coal-based activated carbon was found to be more effective than other carbons in adsorption of tetracycline antibiotic compounds. The wood-based activated carbon was less effective than coconut- and coal-based carbon in adsorption nevertheless having larger pore volume and specific surface area than others carbons. The maximum adsorption capacities(X/M) of coal-based activated carbon for the four tetracycline species was 1.27$\sim$1.36 and 1.69$\sim$1.84 times larger than coconut- and wood-based activated carbon, respectively. Carbon usage rates(CUR) of coal-, coconut- and wood-based activated carbons for tetracycline(TC) were 2.96 g/day, 3.40 g/day and 4.53 g/day, respectively. Similar results were obtained in the adsorption of the rest three tetracycline species. It is concluded that coal-based activated carbon could removed the tetracycline antibiotic compounds better than other material-based activated carbons.

Study on Design Technology of Heat Pump Cycle for High Temperature Performance (고온 생산용 열펌프 사이클 설계)

  • Kim, Jong-Ryul;Kim, Seok-Young;Kim, Yong-Min;Lee, Kong-Hoon;Kim, Ook-Joong;Yi, Sung-Chul;Jung, Chi-Young;Kim, Jong-Ryeol
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.228-233
    • /
    • 2010
  • About 55% of total energy is consumed in the industrial division. The industrial heat pump application will show magnificent energy saving effect as well as higher cost efficiency because of larger energy consuming volume of each facility and longer operation hour and higher stability against seasonal temperature change. Over 90% of dryer for industrial usage has hot wind heat source and hot wind dryer is the representative type covering 68.7% while its 30 ~ 50% lower heat efficiency causes lots of energy loss by exhaust air. Re-usage of exhaust air can improve energy efficiency of dryer because 68% heat energy or 78% of hot air lose in exhaust air. Therefore, high temperature heat pump dryer can be the best alternative. Comparing to the existing dryer with 30% ~ 50% energy efficiency, newly developing high temperature heat pump dryer will enhance energy efficiency up to 60% ~ 80% efficiency. In this paper, heat pump system for high temperature was designed, constructed and tested. The results have shown that system COPh is estimated as 3.3.

Analysis of Exposure Characteristics and Exposure Rating of Participants with Injuries from CMIT/MIT Humidifier Disinfectants (CMIT/MIT 가습기살균제 사용에 따른 피해구제 신청자의 노출등급 및 노출특성 분석)

  • Gihong Min;Junghyun Shin;Eun-Kyung Jo;Seula Lee;Jihun Shin;Dongjun Kim;Jaemin Woo;Yoon-Hyeong Choi;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.3
    • /
    • pp.169-177
    • /
    • 2023
  • Background: The Korea Centers for Disease Control and Prevention (KCDC) has identified cases of people suspected of suffering lung disease potentially caused by chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) used in humidifier disinfectants (HDs). The Korean Ministry of Environment (MoE) epidemiological investigation and toxicity test study found that HDs caused health damage such as asthma and lung disease. Objectives: The main purposes of this study were to classify the HD exposure rating and to analyze the exposure characteristics that affect exposure to CMIT/MIT HDs. Methods: The exposure characteristics and socio-demographic characteristics of victim participants using CMIT/MIT HDs were investigated through questionnaires. An inhalation no observed adverse effect level (NOAEL) for CMIT/MIT was produced based on inhalation toxicity values. Exposure ratings (class 1~class 2) were cross-tabulated with clinical ratings (acceptable~unacceptable). A correlation analysis was conducted with the main exposure characteristics that affect the exposure concentration of CMIT/MIT HDs. Results: The concentration in indoor air of CMIT/MIT was 8.75±25.40 ㎍/m3, and the exposure concentration was 2.30±6.29 ㎍/m3. The CMIT/MIT exposure rating of 67 participants with high exposures of not more than MOE 100 were evaluated as 14.5%, while the damage participants who matched the clinical rating made up 4.5%. The exposure concentration of CMIT/MIT showed a positive correlation with the daily usage amount and usage frequency, and a negative correlation with volume of the indoor environment. Conclusions: A new exposure rating could be suggested and calculated based on the MOE, and the factors affecting the exposure concentration could be identified.

Heat Exchange Element Made of Plastic for Cooling of Telecommunication Cabinet (통신 함체 냉각용 플라스틱 재질의 열교환 소자)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.702-708
    • /
    • 2017
  • The heat generation rate in a telecommunications cabinet keeps increasing due to the increased usage of mobile devices. Insufficient removal of the heat increases the cabinet temperature, which results in the malfunction of the electronic devices. In this study, tests were conducted on aluminum and plastic heat exchangers for cooling a telecommunications cabinet, and the results were compared with theoretical predictions. The aluminum heat exchanger comprised counter flow parallel channels with 4.5-mm pitch, and the plastic heat exchangers comprised cross or cross-counter flow triangular channels with 2.0-mm pitch. The volume of the cross flow heat exchanger was the same as that of the aluminum heat exchanger, and the volume of the cross-counter heat exchanger was 33% larger than that of the aluminum heat exchanger. The results show that the heat transfer rate is the highest for the cross-counter heat exchanger and lowest for the aluminum one. The temperature efficiency of the cross-counter heat exchanger was 56% higher than that of the aluminum one and 20% higher than that of the cross flow heat exchanger. The pressure drop of the cross-counter heat exchanger was approximately the same as that of the aluminum one. The heat exchange efficiency was the highest for the cross-counter heat exchanger and lowest for the cross flow heat exchanger. The theoretical analysis somewhat overestimated or underestimated the data.

Impact of Respiratory Motion on Breast Cancer Intensity-modulated Radiation Therapy (유방암 세기조절방사선치료에서의 호흡운동 영향)

  • Chung, Weon Kuu;Chung, Mijoo;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.93-97
    • /
    • 2016
  • In this study, we evaluate the effect of respiration on the dose distribution in patient target volume (PTV) during intensity-modulated radiation therapy (IMRT) and research methods to reduce this impact. The dose distributions, homogeneity index (HI), coverage index (CVI), and conformity index of the PTV, which is calculated from the dose-volume histogram (DVH), are compared between the maximum intensity projection (MIP) image-based plan and other images at respiration phases of 30%, 60% and 90%. In addition, the reducing effect of complication caused by patient respiration is estimated in the case of a bolus and the expended PTV on the skin. The HI is increased by approximately twice, and the CVI is relatively decreased without the bolus at other respiration phases. With the bolus and expended PTV, the change in the dose distribution of the PTV is relatively small with patient respiration. Therefore, the usage of the bolus and expended PTV can be considered as one of the methods to improve the accuracy of IMRT in the treatment of breast cancer patients with respiratory motion.

The Effect of Temperature on the Breakthrough of Charcoal Tube During Vinyl Chloride Monomer Sampling (공기중 염화비닐단량체 포집시 온도가 파과현상에 미치는 영향)

  • Park, Youn Jung;Lee, Sang Hoi;Kim, Chi Nyon;Won, Jong Uk;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.115-123
    • /
    • 1998
  • Vinyl chloride monomer exists as gas phase at normal temperature and reacts with oxygen and strong oxidant in the air to form oxidized materials. Because of being easily synthesized, it is used as a main source at the synthetic reaction process of PVC synthesis factories. Ministry of Labor regulates its usage as a carcinogen and its exposure level as 1 ppm. But the amount of VCM production in PVC and VCM production process hasn't been exactly estimated. In addition, facilities of this factory are located in outdoor. Therefore, this study was designed to investigate effects of temperature on breakthrough of charcoal tube at a fixed concentration and temperature during VCM sampling based on NIOSH and OSHA methods which were used as methods of occupational environment measuring and analysis. During the sampling of VCM, methods of OSHA and NIOSH require flow rate of 0.05 lpm and sampling volume of $3{\ell}$, $5{\ell}$ respectively, at this time carbon molecular sieve tube and coconut shell charcoal tube are used to observe the breakthrough along with concentration and temperature. As a result, significant difference between average adsorbed amounts of OSHA methods but that of NIOSH methods cannot be found. NIOSH method is likely to be effected by high temperature and normal temperature in high concentration. Breakthrough is not found in the method of OSHA at different conditions of temperature and concentration. As the result of this study we could verify that breakthrough occurred in the process of sampling VCM with NIOSH methods. Therefor in summer time, breakthrough should be considered and research on the breakthrough volume should be done. It is considered the research about the specificity of the coconut shell charcoal and carbon molecular sieve sorbent should be done when sampling VCM in comming days.

  • PDF

The Factor Analysis of Airborn Fiber Concentrations at Parking Lots in Seoul (서울 시내 일부 주차장의 공기중 섬유농도에 영향을 미치는 인자 분석)

  • Moon, Ji Young;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.157-167
    • /
    • 1994
  • This study was conducted to analyze the relationship between the types of fiber and its content and the levels of airborne fiber concentrations at eight parking lots where sprayed insulation material was found on the walls and ceilings. Also this study was designed to find the relationship between the levels of airborne fiber concentrations and such variables as air current, humidity, total exhaust volume, surface condition of insulation material and building age. The results obtained were as follows : 1. No significant correlation was found between the levels of airborne tiber concentration and the building age, air current, humidity, total exhaust volume, space and the number of traffics. 2. A significant correlation was found between the levels of airborne fiber concentration and the MMMF content of the insulation material(r=0.7594). However, no significant correlation was found between the levels of airborne fiber concentration and total fiber content of insulation material. 3. The differences of the airborne fiber concentrations among Cateogory 1, 2 and 3 classified by the degrees of surface insulation material maintenance were very significant. 4. Two bulk samples contained 30% crodicolite and 1% anthophylite. The MMMFs, in all parking lots, included mineral wool, cellulose fiber, trace cellulose fiber, trace tiber glass and vermiculite. 5. The mean value and the range of airborne fiber concentrations at 8 parking lots were $0.0239{\pm}0.0095f/cc$ and 0.0054-0.0447 f/cc, respectively. The fiber concentrations of 35 out of 38 samples(92%) were over 0.01 f/cc which is the Environment Administration's recommended asbestos level for the underground space. This study suggests that most of building insulation materials used in Korea, contain MMMF and sometimes asbestos. Currently, MMMF pollution levels may exceed the Environment Administration's recommended level for underground space. It has been found that airborne fiber concentrations increased significantly with MMMF content and with the maintenance condition of surface material. Therefore, it is recommended that a proper management technique should be developed and immediately implemented since the conditions of surface material will be gradually deteriorated due to building age and usage. Since health hazards of the MMMF, similar to those of asbestos, are being gradually acknowledged, a proper management technique which is applicable to control total airborne fiber concentrations, both asbestos and MMMF, be developed and an acceptable indoor air standard be promulgated as early as possible.

  • PDF