• Title/Summary/Keyword: Ursodeoxycholic acid(UDCA)

Search Result 47, Processing Time 0.024 seconds

Ursodeoxycholic Acid Inhibits Inflammatory Cytokine Expression in THP-1 Cells Infected with Aggregatibacter actinomycetemcomitans

  • Song, YuRi;Kim, SeYeon;Park, Mee Hee;Na, Hee Sam;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.42 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Background: Periodontitis is an inflammatory disease characterized by the breakdown of tooth-supporting tissues, leading to tooth loss. Aggregatibacter actinomycetemcomitans are major etiologic bacterium causing aggressive periodontitis. Ursodeoxycholic acid (UDCA), a hydrophilic gall bladder acid, has been used as an effective drug for various diseases related to immunity. The aim of this study was to investigate the effect of UDCA on the inflammatory response induced by A. actinomycetemcomitans. Methods: A human acute monocytic leukemia cell line (THP-1) was differentiated to macrophage- like cells by treatment with phorbol 12-mystristate 13-acetate (PMA) and used for all experiments. The cytotoxic effect of UDCA was examined by MTT assay. THP-1 cells were pretreated with UDCA for 30 min before A. actinomycetemcomitans infection and the culture supernatant was analyzed for various cytokine production by ELISA. The effect of UDCA on bacterial growth was examined by measuring optical densities using a spectrophotometer. Results: UDCA showed no cytotoxic effect on THP-1 cells, up to $80{\mu}M$ Ed highlight: Please confirm technical meaning. UDCA pretreatment inhibited the A. actinomycetemcomitans-induced $IL-1{\beta}$, $TNF-{\alpha}$, and IL-17A secretion in a dose-dependent manner. UDCA also inhibited IL-21 production at $60{\mu}M$. The production of IL-12 and IL-4 was not influenced by A. actinomycetemcomitans infection. Conclusion: These findings indicate that UDCA inhibits the production of inflammatory cytokines involved in innate and Th17 immune responses in A. actinomycetemcomitans-infected THP-1- derived macrophages, which suggests its possible use for the control of aggressive periodontitis.

Ursodeoxycholic acid decreases age-related adiposity and inflammation in mice

  • Oh, Ah-Reum;Bae, Jin-Sik;Lee, Junghoon;Shin, Eunji;Oh, Byung-Chul;Park, Sang-Chul;Cha, Ji-Young
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.105-110
    • /
    • 2016
  • Ursodeoxycholic acid (UDCA), a natural, hydrophilic nontoxic bile acid, is clinically effective for treating cholestatic and chronic liver diseases. We investigated the chronic effects of UDCA on age-related lipid homeostasis and underlying molecular mechanisms. Twenty-week-old C57BL/6 male and female mice were fed a diet with or without 0.3% UDCA supplementation for 25 weeks. UDCA significantly reduced weight gain, adiposity, hepatic triglyceride, and hepatic cholesterol without incidental hepatic injury. UDCA-mediated hepatic triglyceride reduction was associated with downregulated hepatic expression of peroxisome proliferator-activated receptor-γ, and of other genes involved in lipogenesis (Chrebp, Acaca, Fasn, Scd1, and Me1) and fatty acid uptake (Ldlr, Cd36). The inflammatory cytokines Tnfa, Ccl2, and Il6 were significantly decreased in liver and/or white adipose tissues of UDCA-fed mice. These data suggest that UDCA exerts beneficial effects on age-related metabolic disorders by lowering the hepatic lipid accumulation, while concurrently reducing hepatocyte and adipocyte susceptibility to inflammatory stimuli.

Ursodeoxycholic Acid (UDCA) Exerts Anti- Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow

  • Chung, Jihwa;Kim, Kyoung Hwa;Lee, Seok Cheol;An, Shung Hyun;Kwon, Kihwan
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.851-858
    • /
    • 2015
  • Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

Effect of Ursodeoxycholic Acid on Ischemia/Reperfusion Injury in Isolated Rat Heart

  • Lee, Woo-Yong;Lee, Sun-Mee;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.199-199
    • /
    • 1998
  • In this study, the effects of ursodeoxycholic acid (UDCA) on ischemia/reperfusion injury were investigated on retrograded aortic perfusion model. Hearts from Sprague-Dawley rats were perfused with oxygenated Krebs-Henseleit solution (pH 7.4, 37) on a Langendorff apparatus. After equilibration, hearts were treated with ursodeoxycholic acid 10, 20, 40 and 800 M or vehicle (0.04% DMSO) for 10 min before the onset of ischemia. Following 25 min of global ischemia, ischemic hearts were reperfused and allowed to recover for 30 min. The physiological (i.e. heart rate, left ventricular diastolic pressure, coronary flow and time to contracture formation) and biochemical (lactate dehydrogenase, LDH) endpoints were evaluated. In vehicle group, time to contracture formation (TTC) value was 19.5 min during ischemia, LVDP was 20.8 mmHg at the endpoint of reperfusion and LDH activity in reperfusate was 59.7 U/L. Cardioprotective effects of UDCA following ischemia/reperfusion consisted of a reduced TTC (EC$\_$25/ = 16.10 M), reduced LDH release and enhanced recovery of contractile function during reperfusion. Especially, the treatments of UDCA 80 M remarkably increased LVDP (68.1 mmHg) and reduced LDH release (33.2 U/L). Our findings suggest that UDCA ameliorates ischemia/reperfusion-induced myocardial damage, in agreement with physiological and biochemical parameters.

  • PDF

Amorphous Ultrafine Particle Preparation for Improvement of Bioabailability of Insolube Drugs: Effect of Co-Grinding of UDCA with SLS (난용성 의약품의 생체이용률 증진을 위한 무정형 초미립자의 조제 : UDCA와 SLS의 혼합분쇄 효과)

  • 정한영;곽성신;김현일;최우식
    • YAKHAK HOEJI
    • /
    • v.46 no.2
    • /
    • pp.102-107
    • /
    • 2002
  • The particle size of medicinal materials is an important physical property which affects the pharmaceutical behaviors such as dissolution, chemical stability, compressibility and bioavailability of solid dosage forms. The size reduction of raw pharmaceutical powder is needed to formulize insoluble drugs or slightly soluble drugs and to improve the pharmaceutical properties such as the solubility, the pharmaceutical mixing and the dispersion. The objective of the present study is to evaluate the grinding characteristics of ursodeoxycholic acid(UDCA) as a model of insoluble drugs. The effects of the grinding time and the amount of additive on particle size distribution of ground UDCA were investigated. Grinding of insoluble drug, UDCA and a series of dry co-grinding experiments of UDCA with sodium lauryl sulfate(SLS) as an additive were carried out using a planetary ball mill. It was measured that the median diameter and the particle size distribution of ground products with grinding UDCA and additive SLS by Mastersizer. As a result of co-grinding of UDCA and SLS, the particle size of co-grinding products was decreased more than single grinding one. However, it was observed that co-grinding products were reaggregated to larger particles after 120 min.

Antiinflammatory effect of ursodeoxycholic acid and mixture of natural extracts combined with ursodeoxycholic acid (UDCA를 함유한 생약추출물혼합제제의 항염효과에 관한 연구)

  • Rhyu, In-Cheol;Kim, Sang-Nyun;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.1013-1021
    • /
    • 1996
  • There are many important factors in periodontal inflammation. $IL-1{\beta}$, $PGE_2$ and collagenase are predorminantly key factors. These inflammatory mediators induce gingival tissue and alveolar bone destruction. For the prevention and treatment of periodontal disease, it is necessary to inhibit $IL-1{\beta}$, $PGE_2$ production and collagenase activity. Ursodeoxycholic acid(UDCA) has immunomodulatory properties, and there is evidence that some natural extracts show antiinflammatory activity to some degree. The purpose of this study was to assess the inhibitory effect of UDCA and its mixture with natural extracts on $IL-1{\beta}$, $PGE_2$ production and collagenase activity. Accordingly we assessed the effect of UDCA and its mixture combined with some natural extracts on inhibition of $IL-1{\beta}$, $PGE_2$ production and collagenase activity. For the $IL-l{\beta}$ inhibition study, cultured cells were exposed to $25{\mu}g/ml$ LPS. $IL-1{\beta}$ activity was measured by $IL-1{\beta}$ enzyme immunoassay system. Human gingival fibroblasts were prepared and cells (l05/well) were seeded into culture plates. $rhIL-1{\beta}$ was added to induce $PGE_2$. The amount of $PGE_2$ in sample media was measured using enzyme immunoassay system. Crude collagenase was prepared from Porphyromonas gingivalis and collagenolytic activity was determined using a Collageno kit CLN-100. The test inhibitor was added to the assay mixture consisting of 0.1ml of 50mM Tris buffer(pH 7.5) and 0.2ml of substrate solution. UDCA and UDCA combined with natural extracts generally inhibited $IL-1{\beta}$ production. groups above 0.01% UDCA strongly inhibited $IL-l{\beta}$ synthesis. Both groups inhibited $IL-1{\beta}-induced$ synthesis of $PGE_2$. In low concentration, the degree of inhibition was as same as prednisolone. In high concentration, each group was superior to prednisolone. UDCA group and UDCA mixture group exerted a moderate inhibition of collagenolytic enzyme. The present study suggested that UDCA and its mixture with natural extracts could be further investigated as antiinflammatory drug for periodontal disease.

  • PDF

Ursodeoxycholic Acid in the Prevention of Pediatric Parenteral Nutrition-associated Cholestasis (소아 총정맥영양의 간담도계 합병증에 대한 Ursodeoxycholic acid의 예방효과에 대한 연구)

  • Kim, Ji Hee;Min, Myung Sook;In, Yong Won;Shon, Kie Ho;Choi, Kyung Eob;Choe, Yon Ho;Beck, Nam Sun;Lee, Suk Hyang;Park, Tae Sung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.15 no.1
    • /
    • pp.9-20
    • /
    • 2005
  • Cholestatic liver disease is a frequent complication of prolonged parenteral nutrition, especially in premature infants. Numerous factors have been cited as contributing to TPN associated cholestasis. However the exact etiology remains obscure. Ursodeoxycholic acid (UDCA) has been reported to be beneficial far children and adults with various chronic cholestatic liver disease. The aim of this prospective, randomized, double-blind, placebo-controlled study was to determine the preventive effects of UDCA administration during TPN. Seventeen pediatric patients (8 boys and 9 girls) undergoing TPN were assigned randomly to two groups, UDCA and placebo group. UDCA group (n=9) received 15 mg/kg/day UDCA and placebo group (n=8) received 15 mg/kg/day placebo enterally during the TPN period. Liver function tests (total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase) were per-formed before TPN and weekly or three times a week. The patients' weights, complete blood count, composition of TPN, and the infusion rate of TPN and lipid were monitored everyday. Calcium and phosphate were monitored twice a week. Between the UDCA and placebo groups, there were no differences in weight at the onset of TPN, birth weight, duration of TPN, respiratory distress syndrome associated with prematurity, age at the onset of TPN, gestational age, the number of days the patients received antibiotics, the number of patients received enteral nutritions and the composition of TPN. In contrast, there was a significant difference between the UDCA and placebo groups in alanine aminotransferase levels during TPN. It doesn't seem that UDCA administration during TPN correlates directly with improvement of liver function. But the preventive administration of UDCA may be effective in reducing liver enzyme, alanine aminotransferase and has no adverse effects.

  • PDF

In Vitro Antibacterial Effect of a Mouthrinse Containing CPC (Cetylpyridinium Chloride), NaF and UDCA(ursodeoxycholic acid) against Major Periodontopathogens (Cetylpyridinium Chloride(CPC), NaF 및 Ursodeoxycholic acid(UDCA) 혼합물의 주요 치주병원균에 대한 in Vitro 항균효과)

  • Kim, Chong-Kwan;Choi, Bong-Kyu;Yoo, Yun-Jung;Kim, Sang-Nyun;Seok, Jae-Kyun;Kim, Moon-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.325-333
    • /
    • 1999
  • The antibacterial efficacy of a mouthrinse(Denta Gargle) containing CPC(cetylpyridinium chloride), NaF and UDCA(ursodeoxycholic acid), on major periodontopathogens, was in vitro examined and compared with that of Listerine by a broth dilution method. The bacteria tested were Actinobacillus actinomycetemcomitans, Bacteroides forsythus, Fusobacterium nucleatum subsp. vincentii, Prevotella intermedia, Porphyromonas gingivalis and Treponema denticola. The growth of all the bacteria were completely inhibited by a 1-min exposure to the both mouthrinses. When diluted at 1:5 or more, all bacteria analyzed but P. intermedia were not inhibited by Listerine. In contrast, Denta Gargle showed highly increased maximum inhibitory dilutions(MID) against all periodontopathogens included in this study, with MIDs ranging from 5-fold(F. nucleatum) to 160-fold dilutions(P. intermedia). The MIDs against A. actinomycetemcomitans, B. forsythus, P. gingivalis and T. denticola. were 1:40, 1:80, 1:80 and 1:80, respectively.

  • PDF

Inhibition of iNOS Expression Via Ursodeoxycholic Acid in Murine Microglial Cell, BV-2 Cell Line (생쥐 소교세포(BV-2)에서 우르소데옥시콜린산에 의한 iNOS 발현억제)

  • Joo, Seong-Soo;Won, Tae-Joon;Hwang, Kwang-Woo;Lee, Do-Ik
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.45-49
    • /
    • 2005
  • Background: Inflammation in the brain has known to be associated with the development of a various neurological diseases. The hallmark of neuro-inflammation is the activation of microglia, brain macrophage. Pro-inflammatory compounds including nitric oxide (NO) are the main cause of neuro-degenerative disease such as Alzheimer's disease (AD) which is resulted in cell death. Among those pro-inflammatory compounds, NO contributes to the cell death by directly or indirectly. Methods: In the study, we examined whether ursodeoxycholic acid (UDCA), a non-toxic hydrophilic bile acid, inhibits the NO production by a direct method using Griess reagent and by RT-PCR in the gene expression of inducible nitric oxide synthase (iNOS). In signal transduction, we also examined the NF-${\kappa}B$ (p65/p50), IKK, and I ${\kappa}B$, which are associated with the expression of iNOS gene using western blots. Results: In the present study, we found that UDCA effectively inhibited NO production in BV-2 microglial cell, and NF-${\kappa}B$ activation was reduced by suppressing IKK gene expression and by increasing the I${\kappa}B$ in cytosol comparing those to the positive control LPS. Conclusion: Taken together, these data suggested that UDCA may playa crucial role in inhibiting the NO production and the results imply that UDCA suppresses a cue signal of the microglial activation via stimulators, such as ${\beta}$-amyloid peptides which are known to stimulate microglia in AD pathogenesis.

Increased Expression of c-jun in the Bile Acid-Induced Apoptosis in Mouse F9 Teratocarcinoma Stem Cells

  • Baek, Jin-Hyen;Kang, Chang-Mo;Chung, Hae-Young;Park, Myung-Hwan;Kim, Kyu-Won
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.68-72
    • /
    • 1996
  • Ursodeoxycholic acid (UDCA) and lithocholic acid (LCA), secondary bile acids, have been shown to have a cell differentiation activity in mouse F9 teratocarcinoma stem cells. Treatment with bile acids induced morphological changes, including cytoplasmic and nuclear membrane blebbing, aggregation of organelles, and chromatin condensation, corresponding to apoptosis. Moreover, the bile acids induced intemucleosomal DNA fragmentation, a hallmark of apoptosis. In addition, the expression of c-jun was increased, but that of c-myc and laminin was decreased during apoptosis induced by the bile acids in F9 cells. These results suggest that the bile acids can induce apoptosis in F9 cells. Furthermore, the c-jun expression may be related to the apoptosis induced by UDCA or LCA in F9 cells.

  • PDF