Blood and urine mercury level of three workers were monitored during 60~80 days after high exposure to mercury at the silver refining plant. Mercury was used to form silver-mercury amalgam from plating sludge. Workers were exposed to mercury about 70 days at the several processes, such as hand held weaving, vibration table, and heating from the furnace. mercury was analysed by atomic absorption spectroscopy-vapor generation technique. Recovery from the biological sample was 95.51% and pooled standard deviation was 0.033. At the time of study, there was no work at the workplace. So, airborne mercury concentration was measured with area sampling 5 days after the work, ranged from 0.1459 to 1.2351 mg/㎥(Arithmatic mean 0.4711 mg/㎥, Geometric mean 0.3566 mg/㎥) at the inside of the plant, that is far above the ACGIH's TLV(0.025 mg/㎥) and ranged from 0.0073 to 0.0330 mg/㎥ at the outdoor. Blood mercury levels at the beginning of the monitoring were 4~14 times greater than the American Conference of Governmental Industrial Hygienists Biological Exposure Index(ACGIH BEI, 15 ug/L). Blood mercury levels were decreased logarithmically, that is, rapidly at the high level and slowly at the low level but sustained above the level of the ACGIH BEI 60~80 days after the work. Urine mercury levels at the beginning of the monitoring were 8~16 times greater than the ACGIH BEI(35 ug/g creatinine). Urine mercury levels were decreased logarithmically, but correlation between urine level and off-days were lower than those of blood. Decreasing pattern of blood mercury levels were little affected than that of urine levels when the chelating agent, D-penicillamine, was administered. There was correlation between blood mercury level and urine mercury level(0.81~0.83) but it didn\`t mean that the highest blood mercury level corresponded the highest urine mercury level. In our study, Case 1 always shows the highest level in urine but case 3 always shows the highest level in blood. Creatinine correction represented better correlations between urine mercury levels and blood levels, and between urine levels and off-days rather than by urine volume. Spot urine sampling had a wide variation than that of whole day urine sampling. So, We recommend spot urine sampling for screening and whole day urine sampling for exact diagnosis.
Su-Bin Park;Eun-Kyong Kim;Joon Sakong;Eun Young Park
Journal of Yeungnam Medical Science
/
v.40
no.4
/
pp.373-380
/
2023
Background: The association between dental amalgam fillings and urine mercury concentrations was investigated in this study to assess the health risks associated with dental amalgams. Methods: This cross-sectional study included 99 women in their 20s who visited the dental clinic in Daegu, Korea. The 99 participants were composed of 68 subjects who had dental amalgam fillings (exposure group) and 31 subjects who did not have dental amalgam fillings (nonexposure group). Oral examinations were conducted by a single dental hygienist, sociodemographic features were investigated as confounding variables, and urine mercury concentrations were measured using an automatic mercury analyzer. Results: The mean±standard deviation of the urine mercury concentrations of the exposure and nonexposure groups were 1.50±1.78 ㎍/g creatinine and 0.53±0.63 ㎍/g creatinine, respectively. The exposure group showed significantly higher levels than the nonexposure group (p<0.01). The urine mercury concentration significantly increased with an increase in the number of teeth filled with amalgam, cavity surfaces involved, and number of defective amalgam fillings, and according to the latest exposure time (p<0.001). In the multiple regression analysis of amalgam-related factors and urine mercury concentrations after correction for confounding factors, the urine mercury concentration in the group with six or more amalgam-filled teeth, 11 or more cavity surfaces, and two or more defective amalgams was significantly higher than that in the nonexposure group (p<0.001). Conclusion: According to this study, exposure to dental amalgams was confirmed to significantly affect urine mercury concentrations.
Kim, Guen-Bae;Kim, Dae-Seon;Lee, Jong-Hwa;Park, Hee-Jin;Wee, Seong-Seung
Journal of Environmental Health Sciences
/
v.33
no.5
/
pp.386-391
/
2007
Mercury contamination and its health effects have become major concern of environmental health study in Korea. Mercury exposure of some group were investigated to get the accurate data for policy making and study. About 2,000 children at 26 elementary schools participated in this survey to evaluate the exposure levels and to investigate main exposure source of mercury. Analysis of mercury levels in the whole blood and urine samples were conducted and questionnaire survey was done about the factors influencing exposures simultaneously. Mercury exposure levels of domestic children were N.D. to 17.26 ppb in blood, 0.17 to $21.67{\mu}g/g$-creatinine in urine. The mean(arithmetic) levels are 2.42 ppb in blood and $2.53{\mu}g/g$-creatinine in urine. Both of them were below the recommendation levels of US EPA and German CHBM I $5.8{\mu}g/l$ and $5{\mu}g/l$ in blood, $5{\mu}g/g$-creatinine of German CHBM I in urine. But 1%, 0.51% of levels in blood exceed the level of CHBM I and US EPA, 8%, 0.85% of children were over the level of CHBM I and CHBM II in urine. Multi-valuable regression analysis showed that the existence of road near the residence in addition to the preference for fish have significance with blood mercury exposure level of domestic children. The existence of factory near the house and the experience of dental amalgam treatment had statistical relations with urine mercury level.
Park, Hye-Kyung;Park, Jong-Tae;Lee, Eun-Il;Yum, Yong-Tae
Journal of Preventive Medicine and Public Health
/
v.27
no.3
s.47
/
pp.597-608
/
1994
This study was conducted to evaluate the relationships between the environmental exposure and biological monitoring among workers exposed to metallic mercury We interviewed each workers to get the medical history including previous hazardous occupational history. We measured the respiration rate and tidal volume of each worker in order to calculate the 8-hour inhaled mercury of workers. And we wafted to evaluate the effect of exposure duration to mercury concentrations in blood and urine as biologic exposure indices of metallic mercury. The regression and correlation analysis were done to the relationships of 8-hour inhaled mercury and mercury in blood and urine. The results were as follows; 1. The subjects were 35 fluorescent lamp manufacturing workers. The mean age of subjects was .24.8 years old, and the mean work careers of workers was 1.19 years. 89% of the total was consisted man. 2. The correlation coefficients between 8-hour inhaled mercury and mercury in blood and urine were higher than that of only considered air mercury concentration. 3. The correlation coefficients of 8-hour inhaled mercury and mercury in blood and urine were above 0.9 in workers who had exposed to mercury more than 1 year 4. The R-square value and -value of regression analysis between the 8-hour inhaled mercury and mercury in blood and urine was also higher in workers who had exposed to mercury over 1 year than in workers who had less than 1 year working experience. The important results of this study were that relationships between the 8hr-inhaled mercury and mercury in blood and urine was very high than that with air mercury concentration only. And the results were very apparent when considering workers 1 year or more. Therefore we concluded that the work career and respiratory volume of each individuals should be considered in evaluation the, results of biological monitoring of workers exposed to metallic mercury.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.4
no.2
/
pp.198-207
/
1994
In order to evaluate the effectiveness of environmental intervention of work place, metal mercury concentration in air and in urine of the total 43 workers for 3years from December 1991 to October 1993 in a fluorescent lamp manufacturing industry exposed to mercury, was measured before and after implementation of controls such as establishing exhaust ventilation at the department of exhaustion, coating the floor of work place with epostane, cleaning of the floor, improved housekeeping, and etc. The results were as follows. 1. Before the intervention(December 1991) 39.0% exceeded metal mercury Threshold Limit Value(TLV, $0.05mg/m^3$). After the intervention(October 1993) 10.0% exceeded TLV and geometric mean of mercury in air was $0.1mg/m^3$, and showed effectiveness rate of intervention to be 74.4% 2. After the intervention, geometric means of mercury concentrations in air were 0.013, $0.019mg/m^3$ and showed effectiveness rate of intervention to be 76.6%, 65.5% in A factory(right tube lamp)and at exhaustion department, respectively, A follow up survey fround statistically significant reductions in mercury concetration in air three years later. 3. Mercury concentration in urine of 11 workers(29.7%) exceeded warning level of $100{\mu}l/l$ before the intervention. After the intervention, of 3workers(8.8%) exceeded warning level and geometric mean of mercury concentration($26.5{\mu}l/l$) in urine was 2.4 times than that of before the intervention. Geometric means of mercury concentrations in urine of workers at exhaustion department, at sealing and aging department were 44.0, $77.7{\mu}l/l$, respectively and they decreased 2.3, 3.2 times than that of before the intervention.
Kim, Rock Bum;Kim, Byoung-Gwon;Kim, Yu-Mi;Hong, Young-Seoub;You, Chang-Hun;Kim, Dae-Seon
Environmental Analysis Health and Toxicology
/
v.28
/
pp.15.1-15.8
/
2013
Objectives The aim of this study was to determine the association between low-level mercury exposure and neurobehavioral functions in adults living in coastal regions of Korea. Methods We selected 172 adults aged 20-65 years living in a city in the coastal region of Korea. A sociodemographic survey was conducted, mercury levels in the blood, urine, and hair were measured, and the associations according to computerized neurobehavioral tests were determined using univariate analysis. After adjustment for associated variables, a multivariate linear regression analysis was performed. Results The geometric mean mercury levels in the blood, urine, and hair were $5.41{\mu}g/L$ (range, $0.00-15.84{\mu}g/L$), $1.17{\mu}g/g$-creatinine (range, $0.00-32.86{\mu}g/g$-creatinine), and 1.37 mg/kg (range, 0.42-6.56 mg/kg), respectively. Variables that were associated with simple reaction time according to the neurobehavioral test results were age and urine mercury level. Variables associated with choice reaction time were the recent use of Korean traditional medicine and urine mercury level. Variables associated with the right-hand finger tapping speed test were age, gender, smoking behavior, education level, monthly household income, and urine mercury level. Variables associated with the left-hand finger tapping speed test were age, gender, education level, and urine mercury level. After adjustment for associated variables, there was no significant association between urine mercury level and simple reaction time (${\beta}=25.96$; p =0.47), choice reaction time (${\beta}=50.37$; p =0.32), or the number of left-hand finger taps (${\beta}=-1.54$; p =0.21). However, urine mercury level was significantly associated with the number of right-hand finger taps (${\beta}=-3.86$; p =0.01). Conclusions We found no evidence that low-level mercury exposure in adults is associated with deficits in neurobehavioral functions. A longer follow-up study is required to confirm this conclusion.
Kim, Dae-Seon;Yu, Seung-Do;Cha, Jung-Hoon;Ahn, Seung-Chul;Lee, Eun-Hee
Journal of Preventive Medicine and Public Health
/
v.38
no.4
/
pp.401-407
/
2005
Objectives : We wanted to investigate the relationship between heavy metal, especially lead and mercury, to the blood pressure and cholesterol level in children. Methods : This study was undertaken in three primary schools and the study subjects were a total of 274 children. The lead in the blood and the urine mercury were analyzed by performing atomic absorption spectroscopy. Results : All of participants' blood lead levels and urine mercury concentrations were below the suggested level of concern according to the criteria of the CDC and ATSDR. We found no significant correlation between lead, mercury and the blood pressure. The blood lead level did not show any relationship with the blood pressure and cholesterol. However, the urine mercury levels were associated with the serum cholesterol. Conclusion : Our study suggests that mercury can induce an increase of cholesterol as a risk factor of myocardial infraction and coronary/cardiovascular disease.
Purpose of this study is to find out proper means of estimating the urinary mercury excretion in the normal individuals. Whole void volume was collected every 2 hours beginning from 6 o'clock in the morning until 6 o'clock next morning. Mercury excretion in each urine specimen was measured by NIOSH recommended dithizone colorimetric method (Method No.: P & CAM 145). Urinary concentration of mercury was adjusted by two means: specific gravity of 1.024 and a gram of creatinine excretion per liter of urine comparing the data with the unadjusted ones. Mercury excretion in 24-hour urine specimen was calculated by adding the amounts measured with the hourly collected specimens of each individual. Statistical analysis of the urinary mercury excretion revealed the following results: 1. Frequency distribution curve of mercury excreted in urine of hourly specimens was best fitted to power function expressed in the form of $y=ax^b$. Adjustment of the urinary mercury concentration by creatinine excretion was shown to be superior($y=1674x^{-1.52},\;r^2=0.95$) over nonadjustment($y=2702x^{-1.57},\;r^2=0.92$) and adjustment by specific gravity of 1.024($y=4535x^{-1.66},\;r^2=0.93$). 2. Both log-transformed mercury excretion in hourly voided specimens and mercury excretion itself in 24 hour specimens showed the normal distributions. 3. The frequency distribution of mercury adjusting the urinary concentration of mercury by creatinine excretion was best fitted to a theoretical normal distribution with the sample means and standard deviation than those unadjusted or adjusted with specific gravity of 1.024. 4. Average urinary mercury excretions in 24-hour urine specimen in an individual were as follows: a) Unadjusted mercury excretion mean and standard deviation : $$18.6{\pm}13.68{\mu}gHg/l$$. median : $$16.0\;{\mu}gHg/l$$. range : $$0.0-55.10\;{\mu}gHg/l$$. b) Adjusted with specific gravity mean : $$20.7{\pm}11.76\;{\mu}gHg/l{\times}\frac{0.024}{S.G-1.000}$$ median : $$20.7\;{\mu}gHg/l{\times}\frac{0.024}{S.G-1.000}$$ range : $$0.0-52.9\;{\mu}gHg/l{\times}\frac{0.024}{S.G-1.000}$$ c) Adjusted with creatinine excretion mean and standard deviation : $$10.5{\pm}6.98\;{\mu}gHg/g$$ creatinine/l median : $$9.4\;{\mu}gHg/g$$ creatinine/l range : $$0.0-26.7\;{\mu}gHg/g$$ creatinine/l 5. No statistically significant differences were found between means calculated from 24-hour urine specimens and those from hourly specimens transformed into logarithmic values. (P<0.05).
Kim, Dae Seon;Kwon, Young Min;Chung, Hee-Ung;Nam, Sang Hoon;Yu, Seung Do
Journal of Environmental Health Sciences
/
v.41
no.4
/
pp.231-240
/
2015
Objectives: Blood mercury levels among adults living in certain areas of the Gyeongsang Provinces have been shown to be very high (Kunwee County $29.6{\mu}g/L$, Yeongcheon-city $26.7{\mu}g/L$). The purpose of this project was to determine mercury exposure levels in schoolchildren and factors related with their mercury levels in high mercury exposure areas identifyed by the 2007 Korea National Environmental Health Survey. Methods: From June to September 2010, 1,097 students from grades 3 to 6 at 19 elementary schools participated in this study, including 294 students from 10 elementary schools in Kunwee County, 529 students from Yeongcheon City, 122 students from two elementary schools in Pohang City, North Gyeongsang Province, and 152 students from two elementary schools in Ulsan Metropolitan City. Biological samples from schoolchildren, including whole blood, urine and hair, were collected to measure total mercury at the time of a health check up. Information about children was collected by questionnaire. Total mercury concentrations in blood were measured using the Direct Mercury Analyzer 80 with the gold-amalgam collection method. Results: The mean mercury levels were $2.70{\mu}g/L$ in 1,091 blood samples, $2.25{\mu}g/g-creat.$ in 820 urine samples and $1.03{\mu}g/g$ in 1,064 hair samples. Blood mercury levels in the schoolchildren was slightly higher than the result of $2.4{\mu}g/L$ from a 2006 survey of elementary school children on exposure and health effects of mercury by the National Institute of Environmental Research. However, 0.3% and 4.5% of participants exceeded the reference level of blood mercury by CHBMII ($15{\mu}g/L$) and the US EPA ($5.8{\mu}g/L$), respectively. The reference level of urine by CHBMII ($20{\mu}g/L$) was exceeded by 0.4% of participants. As factors, residence period in the study areas, residence type, father's education level and income all showed significant associations with mercury level in the biological samples. The number of dental amalgam sides showed an association with urine mercury. Fish intake preference and fish intake frequency were important factors in mercury levels. In particular, intake of shark meat and recent intake of shark meat were associated with higher mercury levels. In this regard, participation in the performance of an ancestral rite showed a relation with higher mercury levels. Conclusion: The intake of shark meat was very important factor to high mercury exposure level. It is recommended to monitor and manage students with high mercury exposures who exceeded CHBM II and EPA guidelines, and include blood mercury testing in the Children's Health check up for this province.
Objectives: 1) To determine mercury levels in urine samples from garbage workers in Southern Thailand, and 2) to describe the association between work characteristics, work positions, behavioral factors, and acute symptoms; and levels of mercury in urine samples. Methods: A case-control study was conducted by interviewing 60 workers in 5 hazardous-waste-management factories, and 60 matched non-exposed persons living in the same area of Southern Thailand. Urine samples were collected to determine mercury levels by cold-vapor atomic absorption spectrometer mercury analyzer. Results: The hazardous-waste workers' urinary mercury levels (10.07 ${\mu}g/g$ creatinine) were significantly higher than the control group (1.33 ${\mu}g/g$ creatinine) (p < 0.001). Work position, duration of work, personal protective equipment (PPE), and personal hygiene, were significantly associated with urinary mercury level (p < 0.001). The workers developed acute symptoms - of head-aches, nausea, chest tightness, fatigue, and loss of consciousness at least once a week - and those who developed symptoms had significantly higher urinary mercury levels than those who did not, at p < 0.05. A multiple regression model was constructed. Significant predictors of urinary mercury levels included hours worked per day, days worked per week, duration of work (years), work position, use of PPE (mask, trousers, and gloves), and personal hygiene behavior (ate snacks or drank water at work, washed hands before lunch, and washed hands after work). Conclusion: Changing garbage workers' hygiene habits can reduce urinary mercury levels. Personal hygiene is important, and should be stressed in education programs. Employers should institute engineering controls to reduce urinary mercury levels among garbage workers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.