• 제목/요약/키워드: Urease Accessory Gene

검색결과 5건 처리시간 0.109초

Deletion Mutageneses of the Helicobacter pylori Urease Accessory Genes

  • Lee, Mann-Hyong;Sung, Jae-Young
    • Journal of Life Science
    • /
    • 제9권1호
    • /
    • pp.5-8
    • /
    • 1999
  • Helicobacter pylori is the etiologic agent of human gastritis and peptic ulceration and produces urease as the major protein component on its surface. H. pylori urease is known to serve as a major virulence factor and a potent immunogen. Deletion mutageneses were performed in the H. pylori urease accessory genes by using combinations of restriction enzymes and other DNA modifying enzymes in order to assess the function of these accessory gene products in the expression of the active urease. Selective disruptions in the accessory gene regions resulted in complete abolishment of the urease activity, which is consistent with other bacterial ureases. Interestingly, deletions in ureE-containing regions caused reduced expression of the structural enzyme subunits.

  • PDF

Effect of the Urease Accessory Genes on Activation of the Helicobacter pylori Urease Apoprotein

  • Park, Jeong-Uck;Song, Jae-Young;Kwon, Young-Cheol;Chung, Mi-Ja;Jun, Jin-Su;Park, Jeong-Won;Park, Seung-Gyu;Hwang, Hyang-Ran;Choi, Sang-Haeng;Baik, Seung-Chul;Kang, Hyung-Lyun;Youn, Hee-Shang;Lee, Woo-Kon;Cho, Myung-Je;Rhee, Kwang-Ho
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.371-377
    • /
    • 2005
  • The roles that accessory gene products play in activating the Helicobacter pylori urease apoprotein were examined. The activity of the urease apoprotein increased in the following order when it was expressed with the accessory genes: ureG < ureGH < ureFGH < ureEFGH < ureIEFGH. Moreover, stepwise additions of ureE and ureI to ureFGH significantly increased urease activity. Urease apoproteins coexpressed with ureFGH, ureEFGH, and ureIEFGH had similar low chymotrypsin susceptibilities. In vivo and in vitro activation studies showed that the cooperative effect of the accessory proteins involved processes in which the UreFGH complex, UreE, and UreI were implicated. Thus, the UreFGH complex may serve to alter the conformation of the apoprotein into one that is more competent to assemble a stable metallocenter, and that facilitates cooperative effects.

Expession of the Recombinant Klebsiella aerognes UreF Protein as a MalE Fusion

  • Kim, Keun-Young;Yang, Chae-Ha;Lee, Mann-Hyung
    • Archives of Pharmacal Research
    • /
    • 제22권3호
    • /
    • pp.274-278
    • /
    • 1999
  • Expression of the active urease of the enterobacterium, Klebsiella aerogens, requires the presence of the accessory genes (ureD, ureE, ureF, and ureG) in addition to the three structural genes (ureA, ureB, and ureC). These accessory genes are involved in functional assembly of the nickel-metallocenter for the enzyme. Characterization of ureF gene has been hindered, however, since the UreF protein is produced in only minute amount compared to other urease gene products. In order to overexpress the ureF gene, a recombinant pMAL-UreF plasmid was constructed from which the UreF was produced as a fusion with maltose-binding protein. The MBP-UreF fusion protein was purified by using an amylose-affinity column chromatography followed by an anion exchange column chromatography. Polyclonal antibodies raised against the fusion protein were purified and shown to specifically recognize both MBP and UreF peptides. The UreF protein was shown to be unstable when separated from MBP by digestion with factor Xa.

  • PDF

Cloning and Characterization of the Urease Gene Cluster of Streptococcus vestibularis ATCC49124

  • Kim Geun-Young;Lee Mann-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.286-290
    • /
    • 2006
  • A genomic library of Streptococcus vestibularis ATCC49124 was constructed in an E. coli plasmid vector, and the urease-positive transformants harboring the urease gene cluster were isolated on Christensen-urea agar plates. The minimal DNA region required for urease activity was located in a 5.6 kb DNA fragment, and a DNA sequence analysis revealed the presence of a partial ureI gene and seven complete open reading frames, corresponding to ureA, B, C, E, F, G, and D, respectively. The nucleotide sequence over the entire ure gene cluster and 3'-end flanking region of S. vestibularis was up to 95% identical to that of S. salivarius, another closely related oral bacterium, and S. thermophilus, isolated from dairy products. The predicted amino acid sequences for the structural peptides were 98-100% identical to the corresponding peptides in S. salivarius and S. thermophilus, respectively, whereas those for the accessory proteins were 96-100% identical. The recombinant E. coli strain containing the S. vestibularis ure gene cluster expressed a high level of the functional urease holoenzyme when grown in a medium supplemented with 1 mM nickel chloride. The enzyme was purified over 49-fold by using DEAE-Sepharose FF, Superdex HR 200, and Mono-Q HR 5/5 column chromatography. The specific activity of the purified enzyme was 2,019 U/mg, and the Michaelis constant ($K_{m}$) of the enzyme was estimated to be 1.4 mM urea. A Superose 6HR gel filtration chromatography study demonstrated that the native molecular weight was about 196 kDa.

Klebsiella aerogenes Urease로의 닉켈의 도입 (NICKEL INCORPORATION INTO Klebsiella aerogenes UREASE)

  • Lee, Mann-Hyung-
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 제2회 추계심포지움
    • /
    • pp.69-80
    • /
    • 1994
  • Although ureases play important roles in microbial nitrogen metabolism and in the pathogenesis of several human diseases, little is known of the mechanism of metallocenter biosynthesis in this Ni-Containing enzyme. Klebsiella aerogenes urease apo-protein was purified from cells grown in the absence of Ni. The purified apo-enzyme showed the same native molecular weight, charge, and subunit stoichiometry as the holo-enzyme. Chemical modification studies were consistent with histidinyl ligation of Ni. Apo-enzyme could not be activated by simple addition of Ni ions suggesting a requirement for a cellular factor. Deletion analysis showed that four accessory genes (ureD, ureE, ureF, and ureG) are necessary for the functional incorporation of the urease metallocenter. Whereas the $\Delta$ureD, $\Delta$ureF, and $\Delta$ureG mutants are inactive and their ureases lack Ni, the $\Delta$ureE mutants retain partial activity and their ureases possess corresponding lower levels of Ni. UreE and UreG peptides were identified by SDS-polyacrylamide gel comparisons of mutant and wild type cells and by N-terminal sequencing. UreD and UreF peptides, which are synthesized at ve교 low levels, were identified by using in vitro transcription/translation methods. Cotransformation of E. coli cells with the complementing plasmids confirmed that ureD and ureF gene products act in trans. UreE was purified and characterized. immunogold electron microscopic studies were used to localize UreE to the cytoplasm. Equilibrium dialysis studies of purified UreE with $^{63}$ NiC1$_2$ showed that it binds ~6 Ni in a specific manner with a $K_{d}$ of 9.6 $\pm$1.3 $\mu$M. Results from spectroscopic studies demonstrated that Ni ions are ligated by 5 histidinyl residues and a sixth N or O atom, consistent with participation of the polyhistidine tail at the carboxyl termini of the dimeric UreE in Ni binding. With these results and other known features of the urease-related gene products, a model for urease metallocenter biosynthesis is proposed in which UreE binds Ni and acts as a Ni donor to the urease apo-protein while UreG binds ATP and couples its Hydrolysis to the Ni incorporation process.ouples its Hydrolysis to the Ni incorporation process.s.

  • PDF