• 제목/요약/키워드: Urea-ammonia Treatment

검색결과 96건 처리시간 0.026초

수도(水稻)에 대한 가리(加里)의 시용(施用)이 암모니아의 휘산(揮散)과 질소(窒素)의 흡수(吸收)에 미치는 영향(影響) (Effects of Potassium on the Ammonia Volatilization and Nitrogen Absorption by Paddy Rice)

  • 오왕근;김성배
    • 한국토양비료학회지
    • /
    • 제14권1호
    • /
    • pp.24-30
    • /
    • 1981
  • 가리(加里)의 시용(施用)과 이의 벼뿌리에 의한 흡수(吸收)가 암모니아의 휘산(揮散)과 벼의 질소흡수(窒素吸收)에 미치는 관계(關係)를 알고자 Pot 시험과 포장시험(圃場試驗)을 동시(同時)에 수행(遂行)하여 얻어진 결과(結果)는 다음과 같다. 1. 벼가 재배(栽培)되는 가리시용구(加里施用區)에서는 요소(尿素)의 시용(施用)으로 암모니아의 휘산(揮散)이 일시(一時) 증가(增加)하였으나 점차(漸次) 감소(減少)하여 무가리구(無加里區)에서 보다도 적은 수준(水準)으로 떨어졌다. 2. 벼에 의(依)한 질소(窒素)의 총흡수량(總吸收量)이 무가리구(無加里區)에서 보다 가리구(加里區)에서 현저(顯著)히 많았고 마침내는 습토(濕土)의 pH가 무가리구(無加里區)에서 보다 가리구(加里區)에서 낮아졌다. 3. 질소(窒素)의 시용(施用)으로 가리구(加里區) 토양(土壤)의 pH가 일시(一時) 무가리구(無加里區)보다 높아져서 암모니아의 휘산(揮散)이 느렸으나 바로 벼의 생육량(生育量)과 질소(窒素)의 흡수량(吸收量)이 늘어서 암모니아의 휘산량(揮散量)이 무가리구(無加里區)에서 보다 줄고 토양(土壤)의 pH도 낮아진 것으로 나타났다. 4. 벼뿌리가 차단(遮斷)된 조건하(條件下)에 요소(尿素)가 시용(施用)되었을 때는 무가리구(無加里區)에서 보다 가리구(加里區)에 습토(濕土)의 pH가 낮으며 암모니아의 휘산량(揮散量)도 적어졌다. 5. pH가 높은 토양(土壤)에서는 가리(加里)의 기비다용(基肥多用)이 벼의 생육초기(生育初期)에 암모니아의 휘산(揮散)을 경감(輕減)하고, pH가 높지 않은 보통토양(普通土壤)에서는 가리(加里)의 기비(基肥) 다용(多用)이 습토(濕土)의 pH를 높이어 이질후(移秩後) 벼의 생육초기(生育初期)에 암모니아의 휘산(揮散)을 높일 염려(念慮)가 있는 것으로 생각된다.

  • PDF

Acidification of pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and perennial ryegrass regrowth as estimated by 15N-urea flux

  • Park, Sang Hyun;Lee, Bok Rye;Jung, Kwang Hwa;Kim, Tae Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권3호
    • /
    • pp.457-466
    • /
    • 2018
  • Objective: The present study aimed to assess the nitrogen (N) use efficiency of acidified pig slurry for regrowth yield and its environmental impacts on perennial ryegrass swards. Methods: The pH of digested pig slurry was adjusted to 5.0 or 7.0 by the addition of sulfuric acid and untreated as a control. The pig slurry urea of each treatment was labeled with $^{15}N$ urea and applied at a rate of 200 kg N/ha immediately after cutting. Soil and herbage samples were collected at 7, 14, and 56 d of regrowth. The flux of pig slurry-N to regrowth yield and soil N mineralization were analyzed, and N losses via $NH_3$, $N_2O$ emission and $NO_3{^-}$ leaching were also estimated. Results: The pH level of the applied slurry did not have a significant effect on herbage yield or N content of herbage at the end of regrowth, whereas the amount of N derived from pig slurry urea (NdfSU) was higher in both herbage and soils in pH-controlled plots. The $NH_4{^+}-N$ content and the amount of N derived from slurry urea into soil $NH_4{^+}$ fraction ($NdfSU-NH_4{^+}$) was significantly higher in in the pH 5 plot, whereas $NO_3{^-}$ and $NdfSU-NO_3{^-}$ were lower than in control plots over the entire regrowth period. Nitrification of $NH_4{^+}-N$ was delayed in soil amended with acidified slurry. Compared to non-pH-controlled pig slurry (i.e. control plots), application of acidified slurry reduced $NH_3$ emissions by 78.1%, $N_2O$ emissions by 78.9% and $NO_3{^-}$ leaching by 17.81% over the course of the experiment. Conclusion: Our results suggest that pig slurry acidification may represent an effective means of minimizing hazardous environmental impacts without depressing regrowth yield.

Effects of Ensiled Cassava Tops on Rumen Environment Parameters, Thyroid Gland Hormones and Liver Enzymes of Cows Fed Urea-treated Fresh Rice Straw

  • Khang, Duong Nguyen;Wiktorsson, Hans
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권7호
    • /
    • pp.936-941
    • /
    • 2004
  • Four rumen-cannulated cows (330 kg average weight at 4 years) were used to evaluate the supplement of ensiled cassava tops (ECT) (variety KM 94, 39% DM) on rumen functions, thyroid hormones and liver enzymes. The treatments, arranged in a 4 $\times$4 Latin square design, were ECT at 0, 50, 100 and 150 g CP 100 kg$^{-1}$ body weight (BW), and a basal diet of urea-treated fresh rice straw (UFRS) ad libitum and 1.1 kg dry matter (DM) cassava root meal (CRM) in each 30 day study period. The results showed a continuous decrease in dry matter intake (DMI) of UFRS with increasing level of ECT supplement (p<0.001). The highest total DMI was observed for treatment ECT$_{150}$ (2.68 kg DM 100 kg$^{-1}$ BW day$^{-1}$) followed by treatments ECT$_{100}$, ECT$_{50}$ and ECT$_{0}$, with 2.47, 2.24 and 2.06 kg DM 100 kg$^{-1}$ BW⋅day$^{-1}$, respectively. Increasing levels of ECT supplement increased the concentration of total volatile fatty acids (p<0.05) and ammonia nitrogen (p<0.05) and resulted in a decrease in pH (p<0.05). Overall average plasma triiodothyronine and thyroxine concentrations were 0.80, 0.82, 0.85 and 0.69 ng ml$^{-1}$ (p>0.05), and 50.9, 49.5, 50.7 and 42.4 ng ml-1 (p>0.05) for treatments ECT$_{0}$, ECT$_{50}$, ECT$_{100}$ and ECT$_{150}$, respectively. There were non-significant differences in alanine aminotransferase and aspartate aminotransferase among treatments. It is concluded that ECT is a valuable protein-rich feed supplement to cattle, and the highest level of on average 2.48 kg DM ECT per cow and day (28% of total DMI) did not significantly affect thyroid gland hormones and liver enzymes in cows.

Comparisons of In vitro Nitrate Reduction, Methanogenesis, and Fermentation Acid Profile among Rumen Bacterial, Protozoal and Fungal Fractions

  • Lin, M.;Schaefer, D.M.;Guo, W.S.;Ren, L.P.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권4호
    • /
    • pp.471-478
    • /
    • 2011
  • The objectives were to compare the ability of various rumen microbial fractions to reduce nitrate and to assess the effect of nitrate on in vitro fermentation characteristics. Physical and chemical methods were used to differentiate the rumen microbial population into the following fractions: whole rumen fluid (WRF), protozoa (Pr), bacteria (Ba), and fungi (Fu). The three nitrogen substrate treatments were as follows: no supplemental nitrogen source, nitrate or urea, with the latter two being isonitrogenous additions. The results showed that during 24 h incubation, WRF, Pr and Ba fractions had an ability to reduce nitrate, and the rate of nitrate disappearance for the Pr fraction was similar to the WRF fraction, while the Ba fraction needed an adaptation period of 12 h before rapid nitrate disappearance. The WRF fraction had the greatest methane ($CH_4$) production and the Pr fraction had the greatest prevailing $H_2$ concentration (p<0.05). Compared to the urea treatment, nitrate diminished net gas and $CH_4$ production during incubation (p<0.05), and ammonia-N ($NH_3$-N) concentration (p<0.01). Nitrate also increased acetate, decreased propionate and decreased butyrate molar proportions (p<0.05). The Pr fraction had the highest acetate to propionate ratio (p<0.05). The Pr fraction as well as the Ba fraction appears to have an important role in nitrate reduction. Nitrate did not consistently alter total VFA concentration, but it did shift the VFA profile to higher acetate, lower propionate and lower butyrate molar proportions, consistent with less $CH_4$ production by all microbial fractions.

Nutritional Quality of Napier Grass (Pennisetum purpureum Schum.) Silage Supplemented with Molasses and Rice Bran by Goats

  • Yokota, H.;Fujii, Y.;Ohshima, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제11권6호
    • /
    • pp.697-701
    • /
    • 1998
  • In order to improve silage quality and utilization of napier grass (Pennisetum purpureum Schum.) by goats, the grass was ensiled with molasses (MOL) and/or defatted rice bran (DRB). Napier grass was harvested at the growing stage in July and cut into 3 cm length. The grass was mixed with 4% MOL and/or 15% DRB, ensiled 15 kg each into plastic bags and stored for 9 months. Dry matter content of the silage ensiled with MOL (MOL-silage) was 13.4%, but increased to 20% with DRB addition. The addition of MOL decreased pH value and ammonia nitrogen content, but increased lactic acid content. MOL-silage contained about 6% spoilage, but addition of DRB decreased spoilage to less than 1%. Goats were fed the silage at a level of 2.25% (DM basis) of their body weight. Goats fed DRB- or MOL/DRB-silages maintained nitrogen retention, but goats fed MOL-silage did not. The rumen fluid of goats fed DRB-silage tended to be higher in acetic acid and lower in propionic acid than those fed the other silages. Ammonia in the rumen fluids, urea nitrogen in the blood and the urinary nitrogen excretion were the lowest in goats fed MOL/DRB-silage. As the result, the ratio of retained nitrogen to nitrogen intake was the highest in goats fed MOL/DRB-silage. In conclusion, addition of DRB to napier grass increased DM of silage and decreased the volume of spoilage. The combination of MOL and DRB can improve the fermentation quality and thus enhance the utilization of the silage by goats, more than the MOL or DRB being as a single treatment.

Effects of different levels of dietary crude protein on the physiological response, reproductive performance, blood profiles, milk composition and odor emission in gestating sows

  • Hongjun Kim;Xinghao Jin;Cheonsoo Kim;Niru Pan;Yoo Yong Kim
    • Animal Bioscience
    • /
    • 제36권8호
    • /
    • pp.1263-1273
    • /
    • 2023
  • Objective: This study was conducted to evaluate the effects of crude protein (CP) levels on the physiological response, reproductive performance, blood profiles, milk composition and odor emission in gestating sows. Methods: Seventy-two multiparous sows (Yorkshire×Landrace) of average body weight (BW), backfat thickness, and parity were assigned to one of six treatments with 10 or 11 sows per treatment in a completely randomized design. Experimental diets with different CP levels were as follows: i) CP11, corn-soybean-based diet containing 11% CP; ii) CP12, corn-soybean-based diet containing 12% CP; iii) CP13, corn-soybean-based diet containing 13% CP; iv) CP14, corn-soybean-based diet containing 14% CP; v) CP15, corn-soybean-based diet containing 15% CP; and vi) CP16: corn-soybean-based diet containing 16% CP. Results: There was no significant difference in the performance of sow or piglet growth when sows were fed different dietary protein levels. Milk fat (linear, p = 0.05) and total solids (linear, p = 0.04) decreased as dietary CP levels increased. Increasing dietary CP levels in the gestation diet caused a significant increase in creatinine at days 35 and 110 of gestation (linear, p = 0.01; linear, p = 0.01). The total protein in sows also increased as dietary CP levels increased during the gestation period and 24 hours postpartum (linear, p = 0.01; linear, p = 0.01). During the whole experimental period, an increase in urea in sows was observed when sows were fed increasing levels of dietary CP (linear, p = 0.01), and increasing blood urea nitrogen (BUN) concentrations were observed as well. In the blood parameters of piglets, there were linear improvements in creatinine (linear, p = 0.01), total protein (linear, p = 0.01), urea (linear, p = 0.01), and BUN (linear, p = 0.01) with increasing levels of dietary CP as measured 24 hours postpartum. At two measurement points (days 35 and 110) of gestation, the odor gas concentration, including amine, ammonia, and hydrogen sulfide, increased linearly when sows fed diets with increasing levels of dietary CP (linear, p = 0.01). Moreover, as dietary CP levels increased to 16%, the odor gas concentration was increased with a quadratic response (quadratic, p = 0.01). Conclusion: Reducing dietary CP levels from 16% to 11% in a gestating diet did not exert detrimental effects on sow body condition or piglet performance. Moreover, a low protein diet (11% CP) may improve dietary protein utilization and metabolism to reduce odor gas emissions in manure and urine in gestating sows.

Suitability of Sainfoin (Onobrychis viciifolia) Hay as a Supplement to Fresh Grass in Dairy Cows

  • Scharenberg, A.;Kreuzer, M.;Dohme, Frigga
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권7호
    • /
    • pp.1005-1015
    • /
    • 2009
  • Two experiments were carried out to determine the utility of sainfoin hay, a temperate tanniferous forage legume, as a dietary supplement for grass-fed cows. The condensed tannins (CT) of sainfoin might counteract the typical metabolic ammonia load of cows in intensive grazing systems. Furthermore, the physical fibrousness of sainfoin might improve ruminal pH stability. In the preliminary experiment, the eating rate of non-lactating Holstein cows of two tanniferous hays, sainfoin and birdsfoot trefoil, was compared to that of a grass-clover hay after specific periods of time (n = 4). The eating rate of sainfoin was superior to that of the other forages. In the main experiment, designed as a replicated 3${\times}$3 Latin square, six ruminally-cannulated, lactating Red Holstein cows received grass, concentrate and either no supplementation, 3 kg/d of grass hay or 3 kg/d of sainfoin hay (n = 6). Measured intakes of the grass hay and the sainfoin hay were 2.0 and 1.5 kg DM, and two cows entirely refused to eat the sainfoin hay and had to be excluded from data analysis. Grass DMI was similar for cows supplemented with sainfoin hay and cows fed only grass whereas intake of concentrate was higher (p<0.01) for the latter treatment. Continuous measurement of ruminal pH showed that the minimum pH at night tended to be lower (p<0.10) with grass-only feeding compared to sainfoin supplementation, but pH did not decline below the threshold of subacute acidosis for a longer period of time. The slightly higher intake of nitrogen (N) for cows supplemented with sainfoin hay (413 g/d) compared to cows fed only grass (399 g/d) was accompanied by an increased (p<0.05) fecal N excretion and a tendency for an increased (p<0.10) urinary N excretion. Ruminal ammonia concentration, as well as plasma and milk urea, were not affected by sainfoin supplementation. In conclusion, the lack of positive effects typical for CT might be explained either by the limited CT content of this plant species (55 g/kg DM) or the relatively low proportion of sainfoin in the total diet or both. Moreover, due to the unexpected low grass quality, the general ammonia load might have been too low for CT to have an impact.

Effects of Spent Mushroom Substrates Supplementation on Rumen Fermentation and Blood Metabolites in Hanwoo Steers

  • Oh, Young-Kyoon;Lee, Won-Man;Choi, Chang-Weon;Kim, Kyoung-Hoon;Hong, Seong-Koo;Lee, Sang-Cheol;Seol, Yong-Joo;Kwak, Wan-Sup;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권12호
    • /
    • pp.1608-1613
    • /
    • 2010
  • This study was designed to investigate the effects of supplementation of spent mushroom substrates (SMS) on rumen fermentation and blood metabolites in Hanwoo steers. The experiment was conducted as a duplicated Latin square design with six Hanwoo steers ($600{\pm}47\;kg$), each permanently fitted with a ruminal cannula. There were three treatments; i) control (concentrates 4.8 kg +rice straw 1.2 kg/d), ii) Pleurotus eryngiia (PE) treatment (concentrates 4.8 kg+rice straw 0.73 kg+Pleurotus eryngiia 1.20 kg/d) and iii) Pleurotus osteratus (PO) treatment (concentrates 4.8 kg+rice straw 0.73 kg+Pleurotus osteratus 1.20 kg/d). There were no major effects of different dietary treatments on rumen parameters such as pH, ammonia-N, individual and total VFA production. Parameters of N utilization, including blood urea nitrogen (BUN), total protein and albumin levels, were not significantly different among the treatments, except for creatinine. Thus, the present results indicated that protein utilization was mostly unaffected by SMS treatments such as PE and PO, even though creatinine concentration was lower in PE compared with control and PO treatments (p<0.05). The present results indicate that Pleurotus eryngii and Pleurotus osteratus could be used as a forage source to replace 40% of rice straw without any negative effects on rumen fermentation and blood metabolites in Hanwoo steers.

Effects of Eucalyptus Crude Oils Supplementation on Rumen Fermentation, Microorganism and Nutrient Digestibility in Swamp Buffaloes

  • Thao, N.T.;Wanapat, M.;Cherdthong, A.;Kang, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권1호
    • /
    • pp.46-54
    • /
    • 2014
  • This study was conducted to investigate the effects of eucalyptus (E. Camaldulensis) crude oils (EuO) supplementation on voluntary feed intake and rumen fermentation characteristics in swamp buffaloes. Four rumen fistulated swamp buffaloes, body weight (BW) of $420{\pm}15.0$ kg, were randomly assigned according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. The dietary treatments were untreated rice straw (RS) without EuO (T1) and with EuO (T2) supplementation, and 3% urea-treated rice straw (UTRS) without EuO (T3) and with EuO (T4) supplementation. The EuO was supplemented at 2 mL/h/d in respective treatment. Experimental animals were kept in individual pens and concentrate mixture was offered at 3 g/kg BW while roughage was fed ad libitum. Total dry matter and roughage intake, and apparent digestibilites of organic matter and neutral detergent fiber were improved (p<0.01) by UTRS. There was no effect of EuO supplementation on feed intake and nutrient digestibility. Ruminal pH and temperature were not (p>0.05) affected by either roughage sources or EuO supplementation. However, buffaloes fed UTRS had higher ruminal ammonia nitrogen and blood urea nitrogen as compared with RS. Total volatile fatty acid and butyrate proportion were similar among treatments, whereas acetate was decreased and propionate molar proportion was increased by EuO supplementation. Feeding UTRS resulted in lower acetate and higher propionate concentration compared to RS. Moreover, supplementation of EuO reduced methane production especially in UTRS treatment. Protozoa populations were reduced by EuO supplementation while fungi zoospores remained the same. Total, amylolytic and cellulolytic bacterial populations were increased (p<0.01) by UTRS; However, EuO supplementation did not affect viable bacteria. Nitrogen intake and in feces were found higher in buffaloes fed UTRS. A positive nitrogen balance (absorption and retention) was in buffaloes fed UTRS. Supplementation of EuO did not affect nitrogen utilization. Both allantoin excretion and absorption and microbial nitrogen supply were increased by UTRS whereas efficiency of microbial protein synthesis was similar in all treatments. Findings of present study suggested that EuO could be used as a feed additive to modify the rumen fermentation in reducing methane production both in RS and UTRS. Feeding UTRS could improve feed intake and efficiency of rumen fermentation in swamp buffaloes. However, more research is warranted to determine the effect of EuO supplementation in production animals.

대나무 분말 첨가가 돼지생산성, 도체특성, 혈액성상, 돈분의 가스발생량 및 미생균 균총에 미치는 영향 (Effects of Bamboo Powder Supplementation on Growth Performance, Blood Metabolites and Carcass Characteristics of Fattening Pigs and Gas Emission and Microbial Populations in Pig Manure)

  • 송영민;조재현;추교문;김회윤;이재영;김승철;김삼철
    • 한국환경과학회지
    • /
    • 제23권8호
    • /
    • pp.1429-1436
    • /
    • 2014
  • In this study, we investigated the effects of dietary supplementation (n = 40 pigs/treatment) with bamboo powder (0, 1, 2 and 3%) for 38 days. We evaluated growth performance, blood metabolites, and carcass characteristics of fattening pigs and gas emission and microbial populations in pig manure, to obtain data on pork producers for environmental management. We obtained the following results. First, supplementation with increasing amounts of bamboo powder had a significant (P < 0.05) effect on feed intake, feed efficiency, and glucose contents (except for initial and final body weight, weight gain, carcass characteristics, and blood urea nitrogen). In terms of blood metabolites, glucose and blood urea nitrogen tended to decrease with increasing amounts of bamboo powder. Second, the amounts of ammonia, methane, amine, hydrogen sulfide, and acetic acid were reduced by increasing amounts of bamboo powder when compared with the controls (P < 0.05). However, there were no significant differences in pH, propionic acid, iso-butyric acid, butyric acid, iso-valeric acid, and valeric acid among all treatments. The lowest gas emission was observed when 3% bamboo powder was used. Third, supplementation with increasing amounts of bamboo powder tended (P < 0.05) to increase the total number of bacteria, Lactobacillus spp., and yeast, but E. coli, Salmonella spp., and Shigella spp. were not detected in any treatment. In conclusion, the results of this study suggest that supplementation with bamboo powder was effective in reducing gas emission and inhibiting pathogen populations in pig manure by lowering the pH of the manure.