• 제목/요약/키워드: Urea-SCR System

검색결과 90건 처리시간 0.027초

SCR장치에서 우레아 분무가시화 실험에 관한 연구 (Study on Urea Spray Visualization in SCR System)

  • 백두성;이종선
    • 한국산학기술학회논문지
    • /
    • 제9권3호
    • /
    • pp.611-614
    • /
    • 2008
  • Urea=SCR 시스템은 질소산화물을 감소하기 위한 효과적인 후처리장치 중의 하나로 알려져 있다. SCR 시스템의 성능을 향상시키기 위해서 우레아 분사시스템을 위한 최적의 기하학적인 조건이 형성되어야한다. 본 연구는 대형 디젤기관에서 우레아를 사용한 SCR시스템의 분무 특성을 가시화 하고자 했다. 실험은 우레아 압력과 우레아 유량 그리고 공기압력과 공기량을 변화시킴으로써 이루어졌다. 가시화는 초고속 카메라를 이용하여 촬영하였다.

소형 디젤엔진의 NOx 저감을 위한 Urea-SCR 시스템에 관한 연구 (A Study on the Urea-SCR System for NOx Reduction of a light-Duty Diesel Engine)

  • 남정길
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.57-63
    • /
    • 2005
  • The effects of an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated with the parameters such as urea-SCR(Selective Catalytic Reduction) and EGR system. The urea quantity was controlled by NOx quantity and MAF(Manifold Air Flow). The urea injection quantity can be controlled with the urea syringe pump, precisely. The effects of NOx reduction for the urea-SCR system were investigated with and without ECR engine, respectively. It was concluded that the SUF(Stoichiometric Urea Flow) is calculated and the NOx results are visualized with engine speed and load. Furthermore, the NOx map is made from this experimental results. It was suggested, therefore, that NOx reduction effects of the urea-SCR system without the EGR engine were better than that with the EGR engine except of low load and low speed.

Water Injection/Urea SCR System Experimental Results for NOx Reduction on a Light Duty Diesel Engine

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.394-403
    • /
    • 2008
  • The effects of water injection (WI) and urea injection for NOx on a 4-cylinder Direct Injection (DI) diesel engine were investigated experimentally. For water injection, it was installed at the intake pipe and the water quantity was controlled at the intake manifold and Manifold Air Flow (MAF) temperatures while the urea injection was located at the exhaust pipe and the urea quantity was controlled by NOx quantity and MAF. The effects of WI system, urea-SCR system and the combined system were investigated with and without exhaust gas recirculation (EGR). Several experiments were performed to characterize the urea-SCR system, using engine operating points of varying raw NOx emissions. The results of the Stoichiometric Urea Flow (SUF) and NOx map were obtained. In addition, NOx results were illustrated according to the engine speed and load. It is concluded that the NOx reduction effects of the combined system without the EGR were better than those with the EGR-based engine.

디젤엔진의 질소산화물 저감을 위한 Urea SCR 시스템 특성 분석 (II) (Characterization of SCR System for NOx Reduction of Diesel Engine (II))

  • 이준성;김남용
    • 한국정밀공학회지
    • /
    • 제25권11호
    • /
    • pp.83-89
    • /
    • 2008
  • The Effect of Space Velocity(SV) on NOx conversion rate was performed to develop NOx reduction after-treatment system. SV is calculated from engine exhaust gas volume and SCR catalyst volume. Found the Urea injection duty of maximum efficiency for NOx conversion if increase SV, NOx Conversion rate is down. Especially, when SV is more than $110,000h^{-1}$, NOx conversion rate decrease suddenly. Same case, if SV is lower than $40,000h^{-1}$, NOx conversion rate is down. Also, the characterization of Urea-SCR system was performed. Three candidate injectors for injecting Urea were tested in terms of 속 injection rate and NOx reduction rate. The performances of SCR catalytic converter on temperature were investigated. The performance of Urea-SCR system was estimated in the NEDC test cycle with and without EGR. It was found that nozzle type injector had high NOx conversion rate. SCR catalytic converter had the highest efficiency at the temperature of $350^{\circ}C$. EGR+Urea-SCR system achieved NOx reduction efficiency of 73% through the NEDC test cycle.

Urea-SCR 분사시스템의 DeNOx 저감 성능 향상과 NH3 슬립저감을 위한 모델 기반 제어알고리즘 개발 및 구현 (The Development and Implementation of Model-based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-slip)

  • 정수진;김우승;박정권;이호길;오세두
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.95-105
    • /
    • 2012
  • The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia ($NH_3$) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and $NH_3$ slip reduction in the SCR system. This paper investigated NOx and $NH_3$ emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and $O_2$ for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm can not estimate $NH_3$ absorbed on the catalyst. Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated on the numerical model describing physical and chemical phenomena in SCR system. One channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.

Dynamic Characteristics of a Urea SCR System for NOx Reduction in Diesel Engine

  • Nam, Jeong-Gil;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.235-242
    • /
    • 2007
  • This paper discusses dynamic characteristics of a urea-SCR (Selective Catalytic Reduction) system. The urea flow rate to improve NOx conversion efficiency is generally determined by parameters such as catalyst temperature and space velocity. The urea-SCR system was tested in the various engine operating conditions governing the raw NOx emission levels, space velocity. and SCR catalyst temperature. These experiments include cold-transients to determine catalyst light-off temperature and urea flow rate transients. Likewise. ammonia storage dynamics was also investigated. The cold-transient results indicate the light-off temperature of the catalysts used in these experiments was $200-220^{\circ}C$. The ammonia storage and urea flow rate transients all indicate very slow dynamics (on the order of seconds) which presents control challenges for mobile applications. The results presented in this paper should provide an excellent starting point in developing a functional in-vehicle urea-SCR system.

승용 디젤차량에서 Urea-SCR 시스템의 NOX 저감 특성에 관한 실험적 연구 (Experimental Study on Characteristics of NOX Reduction with Urea-Selective Catalytic Reduction System in Diesel Passenger Vehicle)

  • 박승원;이성욱;조용석;강연식
    • 대한기계학회논문집B
    • /
    • 제41권4호
    • /
    • pp.269-275
    • /
    • 2017
  • LNT(Lean $NO_X$ Trap), LNC(Lean $NO_X$ Catalyst), SCR(Selective Catalytic Reduction)과 같은 $NO_X$ 저감기술은 상용차뿐만이 아닌 승용차량 성능향상을 위해 지속적으로 개발이 진행되고 있다. 특히 Urea-SCR 시스템은 연료손실 없이 이론상 100%에 가깝게 $NO_X$를 저감하는 가장 효과적인 기술로 환원반응으로 배기가스를 $N_2$$H_2O$로 배출하기 위해 환원제인 요소수를 분사해야한다. 하지만 엔진에서와는 달리 실제차량에서의 적용은 SCR 효율이 떨어지게 된다. 따라서 실제차량에서의 SCR 효율을 극대화하는 기술 개발이 요구되고 있는 실정이다. 본 연구에서는, Post EURO-6 배기가스 규제에 대응하기 위한 디젤승용차량에서의 Urea-SCR의 $NO_X$ 저감 성능에 의한 저감효율의 극대화를 목적으로 실차용 Urea-SCR 시스템 위한 기초자료로 제시하고자 한다.

디젤차량 SCR 시스템용 요소수용액의 동결과 해동 현상 (Freezing and Melting Phenomena of Urea-water Solution for Diesel Vehicle SCR System)

  • 최병철;서충길;명광재
    • 동력기계공학회지
    • /
    • 제13권4호
    • /
    • pp.5-10
    • /
    • 2009
  • Urea-SCR system, the selective catalytic reduction using urea as reducing agent, is a powerful technique to reduce nitrogen oxides(NOx) emitted from diesel engines. However, a tank of urea(32.5 wt%)-water solution can be frozen in low ambient temperature levels of below $-11^{\circ}C$. The purpose of this study is to understand freezing and melting phenomena of the urea-water solution, and its can be applied to get the urea-water solution from frozen it within 5 minutes after cold start. Factors considered were the type of heater and the urea tank shape. From the results, it was found that melting volume of cartridge heater B during 5 minutes of heating period was 83ml when supplying electric power of 150W. Horizontal heater B, which was put in the narrow bottom space of the tank T1, had fast melting characteristics.

  • PDF

엔진 냉각수 순환에 의한 urea-SCR 시스템용 요소수의 동결 및 해동 특성 (Frozen and Melting Characteristics of Urea-aqueous Solution for Urea-SCR System by Circulation of Engine Coolant)

  • 최병철;김영권;김화남
    • 동력기계공학회지
    • /
    • 제15권4호
    • /
    • pp.42-47
    • /
    • 2011
  • The purpose of this study is to investigate the best melting condition with various winding number of a heating pipe, supplying quantity of engine coolant and coolant temperature at the inlet of the heating pipe. Also, it is to suggest getting method of an appropriate quantity of the agent for the urea-SCR system within 10 minutes. For this matter, this study identifies the temperature distribution of inside of urea-tank while it is frozen at the low temperature condition, and suggests the best melting condition of the frozen urea within 10 minutes. From the results, it was found that 2L of melted urea was obtained by the coolant flow rate of 200L/hr at $70^{\circ}C$ for 10 minutes from the start of engine operating.

STATIC CHARACTERISTICS OF A UREA-SCR SYSTEM FOR NOx REDUCTION IN DIESEL ENGINES

  • Nam, J.G.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.283-288
    • /
    • 2007
  • This paper presents the static characteristics of a urea-SCR system. The static characterization of the urea-SCR system was generated by sweeping urea flow rates at common engine torque/speed operating points. Several experiments were performed using engine operating points at different raw NOx emission levels, space velocities, and SCR catalyst temperatures. The recorded NOx emissions from the engine exhaust outlet and engine tailpipe are then compared. The urea-SCR static system results indicated that a $50{\sim}60%$ NOx conversion is achievable at most engine operating points using the stoichiometric $NH_3/NOx$ ratio, and a high 98% NOx conversion is possible by exceeding the stoichiometric $NH_3/NOx$ ratio. The effect of the pre-oxidation catalyst volume was also investigated and found to have a profound impact on experimental results, particularly the static NOx conversion.