• Title/Summary/Keyword: Urea receptor

Search Result 44, Processing Time 0.02 seconds

Urea Receptors which Have Both a Fat Brown RR and a Nitrophenyl Group as a Signaling Group

  • Lee, Sung-Kyu;Kang, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3031-3033
    • /
    • 2009
  • A new colorimetric anion sensor 1 has been synthesized based on both Fat brown RR dye and a nitrophenyl group. This new receptor 1 could recognize the presence of fluoride ion effectively and selectively by the change of color of solution. In addition, receptor 1 shows higher affinity for acetate, dihydrogenphosphate, and hydrogensulfate than the other anions such as chloride, bromide, iodide, perchlorate, and nitrate in acetonitrile.

A Naked Eye Detection of Fluoride with Urea Receptors Which have both an Azo Group and a Nitrophenyl Group as a Signaling Group

  • Dang, Nhat Tuan;Park, Jin-Joo;Jang, Soon-Min;Kang, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1204-1208
    • /
    • 2010
  • Anion recognition via hydrogen-bonding interactions could be monitored with changes in UV-vis absorption spectra and in some cases easily monitored with naked eye. Urea receptors 1 and 2 connected with both an azo group and a nitrophenyl group as a signaling group for color change proved to be an efficient naked eye receptor for the fluoride ion. The anion recognition phenomena of the receptors 1 and 2 via hydrogen-bonding interactions were investigated through UV-vis absorption and $^1H$ NMR spectra.

A Pediatric Case of AVPR2-related Nephrogenic Syndrome of Inappropriate Antidiuresis

  • Bae, Hyunwoo;Baek, Hee Sun;Jang, Hae Min;Lee, Eun Joo;Cho, Min Hyun
    • Childhood Kidney Diseases
    • /
    • v.24 no.2
    • /
    • pp.126-130
    • /
    • 2020
  • Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a rare X-linked genetic condition caused by a gain-of-function mutation of arginine vasopressin receptor 2 gene, AVPR2. We report the case of a male neonate diagnosed with NSIAD based on his DNA sequence of the AVPR2 gene and the clinical course. He demonstrated a complete correction of hyponatremia using oral urea. We suggest that (1) sequencing analysis of the AVPR2 gene ought to be done in newborns with prolonged euvolemic hyponatremia, hypo-osmolality, high urinary sodium and normal/low or undetectable AVP levels, and that (2) oral urea is a safe and effective treatment option in infants diagnosed with NSIAD until the patients are grown-up.

Synthesis and Selective Recognition of Dihydrogen Phosphate by Urea-Anthraquinone

  • Jeon, Seung-Won;Park, Duck-Hee;Lee, Hyo-Kyoung;Park, Jin-Young;Kang, Sung-Ok;Nam, Kye-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1465-1469
    • /
    • 2003
  • A neutral ligand is synthesized and studied for the binding properties with anions by electrochemical methods. The binding of 1,8-bis[(N'-phenylureido)ethyloxy]anthraquinone (BPUA) with $H_2PO_4^-$ makes cathodic shift of its electrochemical potentials and red shift of absorption band. This novel neutral anion receptor BPUA binds anions through hydrogen bonding and show high selectivity with $H_2PO_4^-$ over $CH_3CO_2^-,CI^-,{\;}and{\;}HSO_4^-$. The selecivity of H_2PO_4^-$ over $CH_3CO_2^-,CI^-,{\;}and{\;}HSO_4^-$ may be attributed to the stronger hydrogen bonding with urea moiety and also with anthraquinone moiety of BPUA receptor, and also the higher complementarity of the cavity of BPUA for tetrahedral H_2PO_4^-$.