• Title/Summary/Keyword: Urea oxidation

Search Result 46, Processing Time 0.021 seconds

Induction of Leptin cDNA Expression in Esherichia coli Cells (대장균 세포에서 Leptin 유전자의 발현 유도)

  • 김은정;정인철;오상환;조무연
    • Journal of Life Science
    • /
    • v.9 no.3
    • /
    • pp.253-261
    • /
    • 1999
  • Leptin gene, an obesity gene, has been known to involve in the regulation of food intake and body weight. It is also thought to be related to the glucose metabolism, insulin secretion and type II diabetes mellitus. Recently, the production of recombinant leptin protein has been attempted for the application in the treatment of obesity and the correction of hereditary obesity and type II diabetes. In the present study, leptin cDNA was cloned from mouse fat cells by RT-PCR and prokaryotic expression of leptin was attempted in order ot prepare a leptin-specific antigen. Immunization of a rabbit with the leptin-specific antigen into a rabbit resulted in the generation of leptin-specific antiserum that could be useful in the detection of leption expressed in various tissues. The sequence of leptin cDNA prepared in the present study wa identical to the previously reported one. Transformation of E. coli(DH5a) cells with the leptin cDNA-inserted translation vector, pGEX-4T-3-leptin followed by treatment with IPTG (0.1mM) resulted in the expression of a large amount of GST-leptin fusion protein with a molecular weight of 44 KDa as an inclusion body. Denaturation of the insoluble fusion protein by 8M urea, 6M guanidium-HCI or 0.1% 2-mercaptoethanol followed by a slow oxidation could not solubilize the inclusion body. The cell extract was subjected to SDS-PAGE and GST-leptin protein electroeluted from the gel was then injected into a rabbit subcutaneously for the immunization. Anti-GST-leptin rabbit antiserum which had a cross reactivity to the GST-leptin protein was generated. Leptin protein expressed in mouse brain and fat tissues was detected by Western blot immunodetection system using the antiserum generated in the present study.

  • PDF

Preparation of Ni-doped Gamma Alumina from Gibbsite and Its Characteristics (깁사이트로부터 니켈피착 감마알루미나의 제조 및 특성)

  • Lee, Hyun;Chung, In-Sung;Park, Hee-Chan
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1158-1164
    • /
    • 1998
  • Aluminium sulfate solution was prepared by sulfuric acid treatment from gibbsite. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was precipitated from aluminium sulfate solution by adding it into ethylalcohol. From XRD analysis as-prepared $Al_2(SO_4)_3$ · $nH_2O$ was confirmed to have mixed-crystalization water(n=18, 16, 12, 6). The average water of crystalization calculated from thermogravimetry(TG) was 14.7. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was thermally decomposed and converted to $Al_2(SO_4)_3$ at $800^{\circ}C$, $\gamma-Al_2O_3$ at $900-1000^{\circ}C$, and $\alpha-Al_2O_3$ at $1200^{\circ}C$. Ni-doped $\gamma-Al_2O_3$, was synthesized from the slurry of as-prepared $\gamma-Al_2O_3$, with the ratio of [Ni]/[Al]=0.5. The reaction conditions of synthesis were determined as initial pH 9.0 and temperature $80^{\circ}C$ The basicity(pH) of slurry was controlled by using urea and $NH_4OH$ solution. Urea was also used for deposition-precipitation. For determining termination of reaction, the data acquisition was performed by oxidation reduction potential(ORP), conductivity and pH value in the process of reaction. Termination of the reaction was decided by observing the reaction steps and rapid decrease in conductivity. On the other hand, BET(Brunauer, Emmett and Teller) and thermal diffusity of Ni- doped $\gamma-Al_2O_3$, with various content of Ni were measured and compared. Thermal stability of Ni- doped $\gamma-Al_2O_3$ at $1250^{\circ}C$ was confirmed from BET and XRD analysis. The surface state of Ni-doped $\gamma-Al_2O_3$ was investigated by X-ray photoelectron spectroscopy(XPS). The binding energy at $Ni2P_{3/2}$ increased with increasing the formation of $NiAl_2O_4$ phase.

  • PDF

Stability of Oil-in-Water Emulsions with Different Saturation Degrees from Beef Tallow Alcoholysis Products (우지 Alcoholysis 반응물을 이용한 Oil-in-Water Emulsion의 포화도에 따른 산화특성 및 안정성 연구)

  • Zhang, Hua;Lee, Young-Hwa;Shin, Jung-Ah;Lee, Ki-Teak;Hong, Soon-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.933-940
    • /
    • 2013
  • In this study, methyl esters with different saturated fatty acids (SFA) were prepared by urea fractionation to make an oil-in-water emulsion. Emulsion characteristics (emulsion stability and oxidative stability) of the methyl ester emulsion were then studied at different percentages of methyl ester saturation (5, 28, 39, 50, and 72%, termed ${\Sigma}$SFA5, ${\Sigma}$SFA28, ${\Sigma}$SFA39, ${\Sigma}$SFA50, and ${\Sigma}$SFA72, respectively). The stability of emulsions (ES) with different SFA content was 46.0 (${\Sigma}$SFA5), 39.5 (${\Sigma}$SFA28), 32.7 (${\Sigma}$SFA39), 32.6 (${\Sigma}$SFA50), and 27.3 (${\Sigma}$SFA72). Results from Turbiscan showed that creaming or clarification, based on the backscattering intensity, was more pronounced with increases in the saturation degree of the emulsion. These results implied that the emulsions with lower saturation were more stable. During 30 days of storage, the lipid peroxide value increased for all emulsions, with the increase less pronounced with the increasing saturation of the emulsion; 1.880 (${\Sigma}$ SFA5), 1.267 (${\Sigma}$SFA28), 1.062 (${\Sigma}$SFA39), 0.342 (${\Sigma}$SFA50) and 0.153 (${\Sigma}$SFA72) mg $H_2O_2/mL$ emulsion. In addition, thiobarbituric acid reactive substances (TBARS) values were significantly lower in emulsions with high saturation (4.419 mg for ${\Sigma}$SFA50 and 4.226 mg for ${\Sigma}$SFA72) than emulsions with low saturation (6.229 mg for ${\Sigma}$SFA5, 6.801 mg for ${\Sigma}$SFA28 and 6.246 mg for ${\Sigma}$SFA39). In conclusion, the emulsions with a higher saturation degree of methyl esters showed lower emulsion stability but better oxidation stability.

Characterization of Cysteine Residues in Cabbage Phospholipase D by Sulfhydryl Group Modifying Chemicals (설프히드릴 변형 화합물질들에 의한 양배추 포스포리파제 D의 시스테인 잔기의 특성)

  • Go, Eun-Hui
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.5
    • /
    • pp.362-368
    • /
    • 2006
  • SH group modifying chemicals were used to characterize the eight cysteine residues of cabbage PLD. 5,5-dithiobis(2-nitrobenzoate)(DTNB) was used to titrate the SH group of cysteine residues . Based on the optical density at 412nm due to the reduced DTNB, 4 SH groups are found to be present in a native PLD while 8 SH groups in the denatured PLD whose tertiary structure was perturbed by 8M urea. The results imply that among the 8 cysteine residues of PLD, the half(4) are exposed on the surface whereas the other half are present at the interior of the enzyme tertiary structure. The PLD was inactivated by SH modifying reagents such as p-chloromercuribenzoate(PCMB), iodoacetate, iodoacetamide, and N-ethylmaleimide. At the addition of dithiothreitol(DTT) only the PCMB inhibited PLD activity was recovered reversibly. The micro-environment of the exposed SH group of cysteine residues was examined with various disulfide compounds with different functional groups and we found that anionic or neutral disulfides appear to be more effective than the positively charged cystamine for inactivating the PLD activity. The effect of redox state of cysteine residues on the PLD activity was further explored with H2O2. The oxidation of SH groups by H2O2 inhibited the PLD activity more than 70%, which was mostly recovered by DTT. From these results, we could confirm chemically that all the cysteine residues of PLD are present as in their reduced SH forms and the 4 SH groups exposed on the surface of the enzyme may play important roles in the regulation of PLD activity.

Effects of taurine and ginseng extracts on energy metabolism during exercise and their anti-fatigue properties in mice

  • Kim, Jisu;Beak, Suji;Ahn, Sanghyun;Moon, Byung Seok;Kim, Bom Sahn;Lee, Sang Ju;Oh, Seung Jun;Park, Hun-Young;Kwon, Seung Hae;Shin, Chul Ho;Lim, Kiwon;Lee, Kang Pa
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.33-45
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Ginseng extract (GSE) and taurine (TR) are widely used antifatigue resources in functional foods. However, the mechanism underlying the antifatigue effects of GSE and TR are still unclear. Hence, we investigated whether GSE and TR have synergistic effects against fatigue in mice. MATERIALS/METHODS: L6 cells were treated with different concentrations of TR and GSE, and cell viability was determined using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Oxidative stress was analyzed by immunocytochemistry using MitoTrackerTM Red FM and an anti-8-oxoguanine antibody. Respiratory gas analysis was performed to investigate metabolism. Expression of an activated protein kinase was analyzed using immunohistochemistry. Gene expression of cluster of differentiation 36 and pyruvate dehydrogenase lipoamide kinase isozyme 4 was measured using reverse transcription-polymerase chain reaction. Mice were orally administered TR, GSE, or their combination for 30 days, and then fatigue-related parameters, including lactate, blood urea nitrogen, and glycogen, were measured after forced swimming. RESULTS: TR and GSE reduced oxidative stress levels in hydrogen peroxide-stimulated L6 cells and enhanced the oxygen uptake and lipid metabolism in mice after acute exercise. After oral administration of TR or GSE for 30 days, the fatigue-related parameters did not change in mice. However, the mice administered GSE (400 mg/kg/day) alone for 30 days could swim longer than those from the other groups. Further, no synergistic effect was observed after the swimming exercise in mice treated with the TR and GSE combination for 30 days. CONCLUSIONS: Taken together, our data suggest that TR and GSE may exert antifatigue effects in mice after acute exercise by enhancing oxygen uptake and lipid oxidation.

Phase Transitions of $LiMn_2O_4$ on $CO_2$ Decomposition (($CO_2$ 분해시 $LiMn_2O_4$의 상변화)

  • Kwoen, Tae-Hwan;Yang, Chun-Mo;Park, Young-Goo;Cho, Young-Koo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.33-43
    • /
    • 2003
  • $LiMn_2O_4$ catalyst for $CO_2$ decomposition was synthesized by oxidation method for 30 min at 600$^{\circ}C$ in an electric furnace under air condition using manganese(II) nitrate $(Mn(NO_3)_2{\cdot}6H_2O)$, Lithium nitrate ($LiNO_3$) and Urea $(CO(NH_2)_2)$. The synthesized catalyst was reduced by $H_2$ at various temperatures for 3 hr. The reduction degree of the reduced catalysts were measured using the TGA. And then $CO_2$ decomposition rate was measured using the reduced catalysts. Phase-transitions of the catalysts were observed after $CO_2$ decomposition reaction at an optimal decomposition temperature. As the result of X-ray powder diffraction analysis, the synthesized catalyst was confirmed that the catalyst has the spinel structure, and also confirmed that when it was reduced by $H_2$, the phase of $LiMn_2O_4$ catalyst was transformed into $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase. After $CO_2$ decomposition reaction, it was confirmed that the peak of $LiMn_2O_4$ of spinel phase. The optimal reduction temperature of the catalyst with $H_2$ was confirmed to be 450$^{\circ}C$(maximum weight-increasing ratio 9.47%) in the case of $LiMn_2O_4$ through the TGA analysis. Decomposition rate(%) using the $LiMn_2O_4$ catalyst showed the 67%. The crystal structure of the synthesized $LiMn_2O_4$ observed with a scanning electron microscope(SEM) shows cubic form. After reduction, $LiMn_2O_4$ catalyst became condensed each other to form interface. It was confirmed that after $CO_2$ decomposition, crystal structure of $LiMn_2O_4$ catalyst showed that its particle grew up more than that of reduction. Phase-transition by reduction and $CO_2$ decomposition ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase at the first time of $CO_2$ decomposition appear like the same as the above contents. Phase-transition at $2{\sim}5$ time ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase by reduction and $LiMn_2O_4$ of spinel phase after $CO_2$ decomposition appear like the same as the first time case. The result of the TGA analysis by catalyst reduction ; The first time, weight of reduced catalyst increased by 9.47%, for 2${\sim}$5 times, weight of reduced catalyst increased by average 2.3% But, in any time, there is little difference in the decomposition ratio of $CO_2$. That is to say, at the first time, it showed 67% in $CO_2$ decomposition rate and after 5 times reaction of $CO_2$ decomposition, it showed 67% nearly the same as the first time.