• Title/Summary/Keyword: Urea hydrolysis

Search Result 79, Processing Time 0.025 seconds

Kinetics and Hydrolysis Mechanism of Herbicidal N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide Derivatives (제초성, N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-치환(Z)-6-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide 유도체의 가수분해 반응 메카니즘)

  • Lee, Chan-Bog;Ryu, Jae-Wook;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.455-462
    • /
    • 1995
  • The new six herbicidal N-[(pyrimidin-2-yl)aminocarbonyl]-2-substituted-6-(1-hydroxy-2-fluoroethyl)benzenesulfonamide derivatives(S) were synthesized and rate constants for the hydrolysis of thier in the range of pH $1.0{\sim}10.0$ have been studied in 15%(v/v) aqueous acetonitrile solution at $45^{\circ}C$. From the basis of the results, pH-effect, solvent effect, ortho-substituent effect, thermodynamic parameters(${\Delta}H^{\neq}$ & ${\Delta}S^{\neq}$), pKa constant(4.80), rate equation, analysis of hydrolysis products(2-(1-hydroxy-2-fluoroethyl)benzenesulfonamide & 4,6-dimethoxyaminopyrimidine), it may be concluded that the general acid catalyzed hydrolysis through $A-S_E2$ mechanism and specific acid catalyzed hydrolysis through A-2 type(or $A_{AC}2$) mechanism proceeds via conjugate acid($SH^+$) and tetrahedral intermediate(I) below pH 8.0, whereas, above pH 9.0, the general base catalyzed hydrolysis by water molecules(B) through $(E_1)_{anion}$ mechanism proceeds via conjugate base(CB). In the range between $pH\;7.0{\sim}pH\;9.0$, these two reactions occur competitively.

  • PDF

Purification and Properties of $\gamma$-Glutamyl Transpeptidase from Bacillus sp. KUN-17

  • Hwang, Se-Young;Ryang, Jun-Hwan;Lim, Wang-Jin;Yoo, Ick-Dong;Kunio Oishi
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.238-244
    • /
    • 1996
  • $\gamma$-Glutamyl transpeptidase ($\gamma$-GTP; EC 2.3.2.2) present in the culture filtrate of Bacillus sp. KUN-17 was purified 400-fold through a consecutive procedure including organic precipitation and column chromatography. The enzyme has an estimated molecular weight of 70, 000 and consists of hetero-subunits with molecular weights of 42, 000 and 22, 000. In vitro optimal conditions for those transfer and hydrolysis reactions appeared to be pH 7.0 at $50^{\circ}C$ and pH 8.4 at $40^{\circ}C$, respectively. The denatured enzyme recovered most of its $\gamma$-GTP activity by removing detergents such as sodium dodecyl sulfate (SDS) or urea with dialysis. The enzyme showed higher affinities against a number of amino acids as $\gamma$-glutamyl acceptors than glycylglycine in the following order: L-valine, L-methionine, L-glutamic acid or L-as-paragine, L-alanine. Also, it was shown that L-glutamine was the most suitable $\gamma$-glutamyl donor for the transfer reaction among those tested. Amino acids generally inhibited the enzyme activity for the transfer reaction, but not for the hydrolysis reaction.

  • PDF

Characterization of $\beta$-1,4-D-arabinogalactanase from Alkalophilic Bacillus sp. HJ-12 (호알칼리성 Bacillus sp. HJ-12 유래 $\beta$-1,4-D-arabinogalactanase의 특성)

  • 신해헌;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.710-716
    • /
    • 1995
  • $\beta $-1, 4-D-arabinogalactanase isolated from alkalophilic Bacillus sp. HJ-12, approximate Mw 42 kDa, was generally stable in the range of pH 6-10 and below 50$\circ$C and its highest activity was observed at 60$\circ$C with pH 7-9. The isolated $\beta $-1, 4-D-arabinogalactanase specifically hydrolyzed $\beta $-1, 4-galactosyl linkage that is the major structure of soybean arabinogalactan (SAG) but not $\beta $-1, 3-galactosyl linkage of the other polysaccharides. K. was estimated as 0.67 mg/ml by the method of Hanes-Woolf plot. No metals and chemical reagents inhibited the enzyme activity but urea did. The active site of this enzyme assumed to be tryptophan residue. The hydrolysis products from SAG, assayed by gel chromatography, TLC and HPLC, were predominantly galactotetraose (Gal$_{4}$) and triose (Gal$_{3}$) with a small portion. $\beta $-1, 4-D-arabinogalactanase hydrolyzed ONPG as well as SAG, and the degree of hydrolysis of SAG was 15% which is lower than that by the other $\beta $-1, 4-galactanases from different sources. SAG treated with this enzyme resulted in the reduction of specific viscosity up to 70%.

  • PDF

Preparation and Characteristics of Ceramic Composite Powders Coated with $Al_2O_3$: (III) Composite Powders of $Al_2O_3-ZrO_2$ ($Al_2O_3$로 피복시킨 세라믹 복합분체의 제조 및 특성: (III) $Al_2O_3-ZrO_2$ 복합분체)

  • 현상훈;이지현;송원선
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.667-673
    • /
    • 1992
  • The alumina-zirconia composite powders of core particle ZrO2 coated with Al2O3 were prepared by the hydrolysis-deposition of the mixed aluminum salt solution of Al2(SO4)3-Al(NO3)3-Urea. The effects of hydrolysis reaction and coating parameters on characteristics of coated powders and composites were also investigated. The degree of coating could be estimated from the ratio of tetra-/mono-ZrO2 present at the room temperature after heat-treating coated powders at 120$0^{\circ}C$ and the result of TEM observations. When the content of ZrO2 in the dispersed coating system, the coating time, and the volume ratio of water/solution were 50 mg/g, 180 min, and 5, respectively the coating efficiency was maximum (the ratio of tetra-/mono-ZrO2 was 87/13). The relative densities of coated Al2O3-ZrO2 composites sintered at 1$650^{\circ}C$ for 4 hrs were about 91~98% and the maximum ratio of tetra-/mono-ZrO2 in Al2O3-20wt% ZrO2 composites was 62/38.

  • PDF

The Influence of Some Soil-treated Herbicides on the Mineralization of Nitrogen Fertilizers I. In a flooded paddy soil (토양처리형 제초제가 질소비료의 무기화작용에 미치는 영향 I. 침수토양 조건)

  • Kim Moo Key
    • Korean journal of applied entomology
    • /
    • v.15 no.4 s.29
    • /
    • pp.205-214
    • /
    • 1976
  • Effect of Butachlor(2-chloro-2, 6-diethyl N-(buthoxymethyl) acetanilide), Nitrofen(2,4-dichloro-4-nitrodiphenyl ether), Benthiocarb+Simetryne(s-(4-chlorobenzyl)-N, N-diethylthiocarbamate $7\%$+2-methylthio-4, 6-bis(ethylamino)-s-triazine $1.5\%)$, Propanil (3,4-dichloropropionanilide), and Perfluidone {1. 1. 1-trifluoro-N, N-(2-methyl-4-(phenylsulfonyl) Pheny1) methanesulfon amide} on urea hydrolysis and subsequent nitrification was investigated in a flooded soil incubated at $24\pm1^{\circ}C$ for 9 weeks. 1. Butachlor and Perfluidone at the rate of 1,440 and 1,200g, ai/10a, respectively, slightly inhibited the early stage of urea decomposition, and caused a slight decrease in the production of ammomium, which, however, was recovered readily. 2. Propanil at the rate of 2,800g, ai/10a imhibited the first stage of nitrification, and brought about a slight increase in the ammonium conentration and a decrease in the concentration of nitrite and nitrate. This inhibitive effect was a little more evident at higher concentration of applied nitrogen. The other herbicides caused no inhibition of urea decomposition and subsequent nitrification even at the highest rate of application. 3. pH and Eh of the soil were not significantly affected by the herbicides tested.

  • PDF

Reduction of Allergenicity of Wheat Flour by Enzyme Hydrolysis (효소 분해에 의한 밀가루의 항원성 저감화)

  • Park, Ju-Yeon;Ahn, Jeung-Yeub;Hong, Hee-Ok;Hahn, Young-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.152-157
    • /
    • 2004
  • Gluten was extracted from domestic wheat flour using UTH buffer (4 M urea in 0.1 M Tris-HCl, pH 8.6) and validated by SDS-PAGE analysis for production of wheat flour products with reduced gluten content.. Anti-gluten polyclonal antibody was made by administering extracted gluten fraction on animal model. Anti-gluten serum titer of extracted gluten fraction was evaluated by ELISA, and that of antibody titer according to administration period. Anti-gluten sera were used for ELISA and immunoblot analysis before and after hydrolysis of gluten fraction at optimal pH and temperature condition for each protease. Gluten fraction separated by SDS-PAGE showed several bands covering 75 to 10 kDa, in which anti-gluten sera were 25, 34, and 45 kDa. Enzyme hydrolysis of gluten fraction revealed protein band sizes to be lower than 15 kDa. Content of pretense from bovine pancreas (b.p. protease) for gluten hydrolysis was estimated as 1 mg in 10 mL gluten fraction extracted for 4 hr.

Effects of Dietary Antimicrobial Agents, Probiotics or Yucca Extract on Urease Activity and Ammonia Production in the Chicken Intestine (사료중 항균제, 생균제 또는 유카 추출물이 닭의 장내 요소 분해효소 활성과 암모니아 생산에 미치는 영향)

  • 김규일;여진모
    • Korean Journal of Poultry Science
    • /
    • v.22 no.2
    • /
    • pp.105-115
    • /
    • 1995
  • The balance of microbial populations in the gastrointestinal (GI) tract of all warm-blooded animals is critical to the maintenance of health and resistance to disease. The composition of the populations can be altered by diet and environment, making the host animal susceptible to disease, and reducing growth rate and feed efficiency. Some feed additives including antimicrobial agents, prohiotics or yucca extract have been used to promote growth and feed utilization. There is evidence that part of growth-promoting effect of those feed additives results from the suppression of microbial urease activity or ammonia production in the GI contents of animals. Over 200 microbial species have been known to produce urease and the product of urea hydrolysis, ammonia, is toxic to animals. Carefully tested probiotics or other urease-suppressing agents can be a possible alternative to antimicrobial agents including antibiotics as growth promotants used for animals feeds.

  • PDF

Synthesis of some pyridinethione derivatives and their biological activity

  • Miky, Jehane A.A.;Zahkoug, Samir A.M.
    • Natural Product Sciences
    • /
    • v.3 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Aminolysis, hydrazinolysis and alkylation of 4-methoxy and 4,9-dimethoxy-6-cyano-7-thione-5-methyl-7H furo [3,2-g] [1] benzopyridine (1 a-b) yielded 7N-substituted furobenzopyridine derivatives (2 a-e or the possible isomers 3 a-e and 4 a-b), (5 a,b and 6 a,b) and the ester (8 a,b). Hydrolysis of (la) with acetic acid gave the corresponding pyridone derivatives (7). Furobenzopyridinyl-7-thioacetyl hydrazide (9 a,b) have been prepared via alkylation of furobenzopyridine thione (1 a-b) with ethyl chloroacetate followed by condensation with hydrazine hydrate. Schiff base (11) was prepared by reacting (9a) with p. N,N-dimethyl aminobenzaldehyde in boiling ethanol. Treatment of (8a) with anthranilic acid gave the corresponding 7-substituted-4H-3,1-benzoxazine-4-one (10). We found that compound (11) increased bleeding, coagulating time, the total count of white blood cells, blood glucose level (cause hyperglycemia), enzymes (GOT, GPT) activities, concentration of urea and creatinine. On the other hand it decreased red blood cells number, haemoglobin content and haematocrite value.

  • PDF

On the Utilization of Inactive BHC isomers -Synthesis of 3-(2,4,5-trichlorophenyl)-1-methyl urea as a herbicide- (BHC 이성질체(異性質體)의 활용(活用)에 관(關)한 연구(硏究) -제초제(除草劑)로서 3-(2,4,5-trichlorophenyl)-1- methyl urea의 합성(合成)-)

  • Lee, Kyu-Seung;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.22 no.2
    • /
    • pp.109-122
    • /
    • 1979
  • Present study was carried out to reduce residual toxicity of BHC insecticides inherent in the organochlorine pesticides. For This end, r-isomer, the most potent insecticidal component among the BHC stereoisomers, was isolated and thus fortified by means of solvent precipitation. In parallel, 3-(2,4,5-trichlorophenyl)-1-methyl urea was prepared in good yield from technical BHC via 1,2,4-trichlorobenzene, 1,2,4,-trichloronitrobenzene, and 2,4,5-trichloroaniline. In addition, certain merit of the compound which make it possible to use as a herbicide is discussed. The results are summarized as follows; 1. Recrystallizing technical BHC from methanol-water binary solvent system, r-isomer was enriched to 49.7% at 95% recovery of r-isomer. 2. By partitioning technical BHC in 85% of methanolic solution into chloroform, r-isomer was fortified to 89.6% at 90.5% recovery of r-isomer. 3. Yield of 1,2,4-trichlorobenzene from technical BHC was greatly dependent upon concentration of alkalies and to less degree on the alkalies. 4. Surfactants, in particular cationic a quartenary ammonium salt, increased yield of 1,2,4-trichlorobenzene from technical BHC by alkaline hydrolysis. 5. Conversion of 1,2,4-trichlorobenzene to 2,4,5-trichloronitrobenzene was effected almost quantitatively utilizing $HNO_3-H_2SO_4$ nitrating agent at low temperature. 6. Yield of 91.4% was observed for the synthesis of 2,4,5-trichloroaniline by reducing 2,4,5-trichloronitrobenzene in the presence of iron turning and hydrochloric acid. 7. Overall yield based on BHC of 3-(2,4,5-trichlorophenyl)-1- methyl urea was 60.8%. 8. Inhibition effects, both germination and growth, 3-(2,4,5-trichlorophenyl)-1-methyl urea on several crops were found comparable to or more potent than those of $linuron{\circledR}\;and\;diuron{\circledR}$. In addition, it was also noted that susceptibility to the prepared compound depended upon the crops as well as specific part (shoots, roots) of the plant exposed to the chemicals.

  • PDF

Conditions of Hemoglobin Hydrolysis and Separation for the Production of Enriched Heme-iron (고농도 Heme-iron의 생산을 위한 Hemoglobin의 가수분해 및 분리 조건)

  • Kang, In-Kyu;In, Man-Jin;Oh, Nam-Soon
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.219-223
    • /
    • 2001
  • Effects of hemoglobin (Hgb) concentration and degree of hydrolysis (DH) of Hgb on the separation of heme-iron were examined to produce highly enriched heme-iron from Hgb hydrolysate. Separation efficiency of Hgb hydrolysate with different DH was studied at wide pH range (pH $1.0{\sim}11.0$). Separation efficiency expressed as heme-iron/peptide ratio increased with decreasing Hgb concentration. When 5% Hgb (pH 10.0) was hydrolyzed using commercially available Esperase for 5 h at $50^{\circ}C$, DH was 25%. The precipitation of heme-iron-enriched peptides were remarkably high at pH range $3{\sim}6$. Optimal pH range for heme-iron with high heme-iron/peptide ratio shifted to acidic pH with increasing DHs of Hgb. The enriched heme-iron fraction in the precipitates showed a single band through urea-SDS-PAGE, with a molecular mass of 1 kDa. In the dry heme-iron product produced in a pilot bioreactor, content of heme-iron and heme-iron/peptide ratio were 27.1 and 38.7%, respectively, and production yield was 9.3%.

  • PDF