• Title/Summary/Keyword: Urea content

Search Result 453, Processing Time 0.025 seconds

Nitrogen Retention and Chemical Composition of Urea Treated Wheat Straw Ensiled with Organic Acids or Fermentable Carbohydrates

  • Sarwar, M.;Khan, M. Ajmal;Nisa, Mahr-un
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1583-1591
    • /
    • 2003
  • The influence of varying levels of urea and additives on nitrogen (N) retention and chemical composition of wheat straw was studied. The wheat straw was treated with 4, 6 and 8% urea and ensiled with 1.5, 2 and 2.5% of acetic or formic acid and 2, 4 and 6% of corn steep liquor (CSL) or acidified molasses for 15 days. The N content of wheat straw was significantly different across all treatments. The N content of urea treated wheat straw was increased with the increasing level of urea. The N content was higher in urea treated wheat straw ensiled with acetic or formic acid as compared to urea treated wheat straw ensiled without these organic acids. The N content of urea treated wheat straw was further enhanced when it was ensiled with CSL or acidified molasses. This effect was significant across all levels of urea used to treat the wheat straw. Nitrogen retention in urea treated wheat straw was decreased linearly as the urea level was increased to treat the wheat straw. The N content was increased linearly when higher levels of CSL or acidified molasses were used to ensile the urea treated wheat straw. Most of the N in urea treated wheat straw was held as neutral detergent insoluble N (NDIN). The NDIN content was increased linearly with the increasing levels of urea and additives. The neutral detergent fiber (NDF) contents were higher in urea treated wheat straw ensiled with acetic or formic acid as compared to urea treated wheat straw ensiled without additive. The NDF content further increased in urea treated wheat straw ensiled with CSL and acidified molasses. The entire increase in NDF content was because of fiber bound N. The hemicellulose content of urea treated wheat straw ensiled with CSL or acidified molasses was higher as compared to urea treated wheat straw ensiled with acetic or formic acid. The acid detergent fiber content of urea treated wheat straw ensiled with or without additives remained statistically non-significant. The cellulose contents of wheat straw was linearly reduced when urea level was increased from 4 to 6 and 8% to treat the wheat straw. This effect was further enhanced when urea treated wheat straw was ensiled with different additives. The results of the present study indicated that fermentable carbohydrates might improve the Nitrogen retention and bring the favorable changes in physiochemical nature of wheat straw. However, biological evaluation of urea treated wheat straw ensiled with fermentable carbohydrates is required.

Properties of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde to Urea Mole Ratios

  • Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.67-75
    • /
    • 2007
  • As a part of abating the formaldehyde emission of urea-formaldehyde (UF) resin adhesive by lowering formaldehyde to urea (F/U) mole ratio, this study was conducted to investigate properties of UF resin adhesive with different F/U mole ratios. UF resin adhesives were synthesized at different F/U mole ratios of 1.6, 1.4, 1.2, and 1.0. Properties of UF resin adhesives measured were non-volatile solids content, pH level, viscosity, water tolerance, specific gravity, gel time and free formaldehyde content. In addition, a linear relationship between non-volatile solids content and sucrose concentration measured by a refractometer was established for a faster determination of the non-volatile solids content of UF resin. As F/U mole ratio was lowered, non-volatile solids content, pH, specific gravity, water tolerance, and gel time increased while free formaldehyde content and viscosity were decreased. These results suggested that the amount of free formaldehyde strongly affected the reactivity of UF resin. Lowering F/U mole ratio of UF resin as a way of abating formaldehyde emission consequently requires improving its reactivity.

A study on Property of Emission Gas by the Content Variation of Urea (UREA의 함량 변화에 따른 배출가스 특성분석)

  • Kang, Hyungkyu;Doe, Jinwoo;Hwang, Inha;Im, Jaeheuk;Ha, Jonghan;Na, Byungki
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.24-32
    • /
    • 2015
  • National and international regulations on the exhaust gases of diesel engines are being strengthened, and a study of the combutsion engine and the post-porcessing system are in progress as a variety of ways. There are many techniques for the removal of nitrogen oxide like HC-SCR, LNT, Urea-SCR. And the technical development on the Urea-SCR owing to high conversion efficiency and fuel economy characteristics has being processed. This study investigated the physical/chemical properties of urea according to the change of the urea content, and were analysed the characteristic of exhaust gas. According to the increase of urea content, the contests of biuret aldehyde, phosphate content was increased and the changes of emission quantity of carbon monoxide, hydrocarbons and particulate matter in the exhaust gas was very slight. The emission quantity of NOx was decreased in accordance with increasing the urea content and it was shown to be more than 80 % in the urea solution having more than 30 wt%.

EFFECT OF UREA NITROGEN ON THE METABOLISM OF PLANTS (III)

  • Kim, Joon-Ho
    • Journal of Plant Biology
    • /
    • v.5 no.3
    • /
    • pp.6-10
    • /
    • 1962
  • Leaf samples, raised on the N-deficient and N-abundant sand and sprayed with varying concentration of urea, were analized for their total chlorophyll concentration. It was observed that the depression periods of the chlorophyll content appeared at first by spraying with urea; it appeared on the 3rd day in the N-deficient plots and on the 6th day in the N-abundant plots. Causes of the depression of chlorophyll may be assumed to be in an excessive urea, an accumulation of ammonia from urea absorbed, and depression of water content owing to urea application. The maximum content of the chlorophyll was shown on the 6th day in N-deficient and on the 12th day in the N-abundant plots. The young leaves activity formed the chlorophyll by urea foliar spray, compared with the mature ones. This result was consistent with previous paper.

  • PDF

THE EFFECTS OF UREA NITROGEN ON THE METABOLISM OF PLANTS (II) The response of some nitrogen components of barley to urea and other nitrogen in water culture.

  • Kim, . Joon Ho
    • Journal of Plant Biology
    • /
    • v.5 no.2
    • /
    • pp.6-12
    • /
    • 1962
  • For the comparison with the previous paper (4) the present report deals with the absorption and metabolism of urea and other nitrogen ions in barley seedling absorbed through root. 1. The amount of nitrate in barley treated with urea reach it peak on the 8th day. NO3 on the 4th, NH4 on the 6th or 8th, respectively. 2. The ammonia content in urea group reaches its peak on the 6th day but other groups on the 4th day. The present data in the urea group show to shorten 4 days compared with that of the previous paper(4). 3. the content of total amide from the present data aare gradully increased on all of the groups during this experiment. These are agreement with the result of the previous paper (4). 4. the alcohol solution nitrogen in the urea gorup shows the similar tendency to the NaNO3 group but reaches it peak 2 days later than in the (NH4)2SO4 group. 5. The content of total nitrogen in the urea series has the lowest amount at the beginning while the richest from the 4th day after. These would be explained on that the absorption of urea is delayed and the PH in the urea solution does not change, so called "physiological neutrality". The author should like express his sincere thanks to Prof. M.J.Lee of Seoul National University for his valuable advices.e advices.

  • PDF

EFFECTS OF UREA NITROGEN ON THE METABOLISM OF PLANTS (1) Studies on Nitrogen Absorption and Metabolism in Sunflower Leavessprayed with Urea Solution

  • KIM, Joon Ho
    • Journal of Plant Biology
    • /
    • v.4 no.2
    • /
    • pp.51-61
    • /
    • 1961
  • In order to detect the way of absorption and metaboism of the urea it is sprayed on the surface of the leaves of sunflower. The sunflowers used in this study are grown in different conditions such that the one in nittogen aboundant and the other in nitrogen deficient soil, respectively. The urea-N, ammonia-N, amide-N, and 80% alcohol soluble-N in the leaves were quantitatively determined. All of the nitrogenous components measured are generally tended to increased with rising the concentration of urea except only amide-N at 24 hours after sprayed, and these were highly significances. It seemed that hydrolizing of urea into ammonia and carbon dixide and the assimilation of ammonia into other organic nitrogenous constituents were rapid in the young leaves than in the mature. It is interest that the amide content, in the young leaves and nitrogen defieient one were enhanced with the increasing concentration of urea, although in the mature leaves it did not show any change in the urea treatment. It is presumed that the assimilation rate of ammonia and the urease activity were lower in the matture leaves than in the young and nitrogen deficient leaves. No significance at 5% level showed all of the nitrogenous components except total nitrogen between nitrogen abundant and deficent leaves. Urea content was a high peak at first 12 hours, ammonia at 48 hours, and amide and alcohol soluble nitrogen at 96 hours, whence decrease4d the content of these constituents gradually. The total nitrogen content is not incrased obviously by only one time of urea spray in this study. When the concentration of urea was relatively high there appeared the wilting spots on t도 edge of leaves. As a whole, it seemed that sprayed urea was rapidly absorbed and taken part in nitrogen metabolism within relatively short period.

  • PDF

Study on Characteristics of Change of Urea and Biuret Content by Temperature Variation in Urea Solution (요소수(Urea solution)의 온도변화에 따른 요소 및 뷰렛함량 변화 특성 연구)

  • Doe, Jin-woo;Park, Tae-sung;Lee, Yu-rim;Yim, Eui-soon;Lee, Joung-min;Kang, Hyung-kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1307-1319
    • /
    • 2018
  • As interests in the air pollution increases, many kinds of researches are underway on the reduction of air pollutants. The removal of nitrogen oxides from the emission gas of diesel vehicles using urea solution has shown a great effect. The quality of urea solution is strictly defined by domestic law, but the increase of impurities in urea solution reduces the effect of reducing nitrogen oxides. Therefore, in this study, the change of physical properties of urea solution was analyzed after heating the urea solution for a certain temperature and time. Also, the changes of physical properties of urea solution were analyzed according to kinds of storage container and temperature for storing the urea solution. After heating the urea solution for a certain period of time, the biuret content in urea solution increased and the content of urea decreased. As the urea content decreased, both density and refractive index decreased. In the storage stability test carried out at a constant temperature with iron and PET containers, no change in physical properties was observed.

The Effect of the Application Levels of Slurry and Urea on Productivity of Silage Corn (액상구비 및 요소의 시용수준이 Silage용 옥수수의 생산성에 미치는 영향)

  • 육완방
    • Journal of Animal Environmental Science
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 1997
  • This experiment was conducted for the effects of application levels of slurry and urea on the production of silage corn. The result was as follows; 1. DM yield of silage corn was the highest in the 100kg/ha level of urea and 160kg/ha of slurry. 2. Crude protein content was increased with increasing slurry and urea. 3. Total N production was increased continuously with increasing slurry in the 100kg/ha of urea, however, it was not affected by 200kg of urea. 4. NDF content was not affected by an application levels of slurry and urea.

Effect of Soil Water Contents on Urea Hydrolysis and Nitrification in a Newly Reclaimed Tidal Soils

  • Park, Mi-Suk;Kim, Hye-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • The effect of soil water content on the transformation potential of N compounds derived from hydrolysis of urea applied in a reclaimed tidal soils which was saline-sodic was observed to evaluate nitrification rates of urea. Soil samples were collected from Moonpo series at the newly reclaimed area in Saemanguem. For the transformation potential of N compounds from urea (46% N), newly reclaimed tidal soils (RS) were amended with urea at the rates of 0, 10, and 20 kg $10a^{-1}$. With leachate obtained from the incubated RS in a leaching tube at $25^{\circ}C$, urea hydrolysis and nitrification were measured for a total of 30days. The cumulative amounts of $NO_3{^-}$-N in each of the four soils treated with urea was linear with time of incubation. Results showed that increase in pH occurred with increasing application rate of urea and volumetric water content due to hydrolysis of urea. The total N in the RS was decreased with incubation time, indicating that rates of urea hydrolysis was influenced by soil moisture conditions. Also, the cumulative amount of nitrate in RS gradually increased with increase in time of incubation.

Urea Kinetics in Wethers Exposed to Different Ambient Temperatures at Three Dietary Levels of Crude Protein

  • Sun, Sang-Soo;Christopherson, Robert J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.795-801
    • /
    • 2005
  • Eighteen Suffolk wether lambs (BW = 24 kg) were chronically exposed to temperatures of cold (2$^{\circ}C$) or warm (22$^{\circ}C$). The experimental design consisted of a 2${\times}$3 factorial with a single crossover of environment treatment. The sheep were closely shorn and were housed in individual metabolic crates in controlled environment rooms. Sheep consumed pelleted diets ad libitum, which consisted of mainly barley grain and brome grass, and diets contained 7, 11 or 14% crude protein (CP). Animals were catheterized via one jugular vein with a PVC catheter and received a single injection of 60-65 Ci of $^{14}$C]urea. Plasma urea-N (PUN), urinary urea (UU), and carbon specific radioactivity were measured. Urea metabolism was not affected by environment. Percent urea recycling and urea space clearance were highest (p<0.05) on the low nitrogen diet. Urea pool was increased (p<0.10) for the 14% CP diet. Both UU and PUN concentration were positively related (p<0.01) with diet CP content. Therefore, dietary CP content significantly influenced urea metabolism, however, cold exposure did not alter those parameters.