• Title/Summary/Keyword: Urea Treatment

Search Result 726, Processing Time 0.029 seconds

Successful treatment of a child with citrullinemia

  • Lee, Key-Hyoung;Park, Moon-Sung;Hahn, Si-Hoon
    • Journal of Genetic Medicine
    • /
    • v.1 no.1
    • /
    • pp.5-10
    • /
    • 1997
  • The amino acids formed by degradation of proteins ingested produce ammonia. The ammonia which is broken down and excreted as urea through a process known as the Klebs-Hensleit cycle or the urea cycle (Rezvani, 1995). The urea cycle consists of five enzymes necessary for the synthesis of carbamyl phosphate, citrulline, argininosuccinate, arginine, and urea: carbamyl phosphate synthetase (CPS), ornithine transcarbamylase (OTC), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), and arginase (ARG) (Lloyd, 1992). Congenital deficiencies of the enzymes involved in the urea cycle are diseases that are almost fatal without treatment, showing symptoms like vomiting, lethargy, dyspnea, and coma due to hyperammonemia coming from the accumulation of ammonia and metabolic precursors resulting from the deficiency of one of these enzymes (Batshaw and Brusilow, 1983). Among these, the disease manifested by the congenital deficiency of argininosuccinate synthetase (AS) which is associated with the formation of argininosuccinate in citrulline is called argininosuccinate synthetase deficiency or citrullinemia. There have been two reports on this so far in Korea; one in July 1987 by Kim et al. and the other by Park et al. in 1995. We are to report a case of successful treatment of a child with citrullinemia who was transferred to our hospital due to dyspnea, lethargy, feeding difficulties, convulsions and cyanosis together with some document studies related to this case.

  • PDF

Effects of Combining Feed Grade Urea and a Slow-release Urea Product on Characteristics of Digestion, Microbial Protein Synthesis and Digestible Energy in Steers Fed Diets with Different Starch:ADF Ratios

  • Lopez-Soto, M.A.;Rivera-Mendez, C.R.;Aguilar-Hernandez, J.A.;Barreras, A.;Calderon-Cortes, J.F.;Plascencia, A.;Davila-Ramos, H.;Estrada-Angulo, A.;Valdes-Garcia, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.187-193
    • /
    • 2014
  • As a result of the cost of grains, the replacement of grains by co-products (i.e. DDGS) in feedlot diets is a common practice. This change produces diets that contain a lower amount of starch and greater amount of fibre. Hypothetically, combining feed grade urea (U) with slow release urea (Optigen) in this type of diet should elicit a better synchrony between starch (high-rate of digestion) and fibre (low-rate of digestion) promoting a better microbial protein synthesis and ruminal digestion with increasing the digestible energy of the diet. Four cannulated Holstein steers ($213{\pm}4$ kg) were used in a $4{\times}4$ Latin square design to examine the combination of Optigen and U in a finishing diet containing different starch:acid detergent fibre ratios (S:F) on the characteristics of digestive function. Three S:F ratios (3.0, 4.5, and 6.0) were tested using a combination of U (0.80%) and Optigen (1.0%). Additionally, a treatment of 4.5 S:F ratio with urea (0.80% in ration) as the sole source of non-protein nitrogen was used to compare the effect of urea combination at same S:F ratio. The S:F ratio of the diet was manipulated by replacing the corn grain by dried distillers grain with solubles and roughage. Urea combination did not affect ruminal pH. The S:F ratio did not affect ruminal pH at 0 and 2 h post-feeding but, at 4 and 6 h, the ruminal pH decreased as the S:F ratio increased (linear, p<0.05). Ruminal digestion of OM, starch and feed N were not affected by urea combination or S:F ratio. The urea combination did not affect ADF ruminal digestion. ADF ruminal digestion decreased linearly (p = 0.02) as the S:F ratio increased. Compared to the urea treatment (p<0.05) and within the urea combination treatment (quadratic, p<0.01), the flow of microbial nitrogen (MN) to the small intestine and ruminal microbial efficiency were greater for the urea combination at a S:F ratio of 4.5. Irrespective of the S:F ratio, the urea combination improved (2.8%, p = 0.02) postruminal N digestion. As S:F ratio increased, OM digestion increased, but ADF total tract digestion decreased. The combination of urea at 4.5 S:F improved (2%, p = 0.04) the digestible energy (DE) more than expected. Combining urea and Optigen resulted in positive effects on the MN flow and DE of the diet, but apparently these advantages are observed only when there is a certain proportion of starch:ADF in the diet.

Comparison of Different Alkali Treatment of Bagasse and Rice Straw

  • Suksombat, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1430-1433
    • /
    • 2004
  • A study was conducted to determine the effect of different alkali treatments on changes in chemical composition and on degradability of bagasse and rice straw. This study divided into 2 experiments, the first with bagasse and the second with rice straw. Each experiment comprised 9 treatments which included: untreated control; 3% NaOH; 6% NaOH; 3% urea; 6% urea; 3% NaOH/3% urea; 3% NaOH/6% urea; 6% NaOH/3% urea; 6% NaOH/6% urea. In both experiments, crude protein contents were increased from 2.0 to 12.5 units for bagasse and 3.1 to 13.7 units for rice straw by urea treatments. Ash contents of the treated bagasse and rice straw were increased over the untreated control (1.5-9.7 units for bagasse; 4.2-8.8 units for rice straw). The effects on ether extract, crude fiber, neutral detergent fiber and acid detergent fiber of the treated bagasse and rice straw were variable. Nylon bag degradability of dry matter and crude fiber were increased by treatments applying NaOH and NaOH plus urea but not urea alone. In contrast, the egradability of neutral detergent fiber and acid detergent fiber were reduced compared with the untreated control. From these degradability studies, it can be concluded that the most efficient treatments of bagasse were those treatments with 6% NaOH, followed by treatments with 6% NaOH plus 3% or 6% urea and 3% NaOH plus 3% or 6% urea, respectively. However, when comparison was made on the cost of chemical used to treat the agricultural by-products, particularly in case of rice straw, 3-6% urea would be appropriate.

NUTRITIVE EVALUATION OF SAGO FIBRE

  • Yadav, D.P.;Mahyuddin, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.2
    • /
    • pp.177-182
    • /
    • 1991
  • Nutrient evaluation of sago fibre showed that the fibre has potential and could be utilized as feed for ruminants. However, as a source of nutrients, it has limitations arising from low intake, digestibility, crude protein and minerals content. The present study showed that the sago fibre is low in crude protein (3.3%) and high in neutral detergent fibre (72.5%) and acid detergent lignin (25.8%) contents. Treatment of sago fibre with urea increased the crude protein content from 3.3 to 16.7%. Both urea and sodium hydroxide treatment decreased the neutral detergent fibre level from 72.5 to 59 and 56.5%, respectively. Rumen degradation of sago fibre by nylon bag showed that both urea and sodium hydroxide treatments increased dry matter and organic matter disappearance of the fibre significantly. In vivo digestibility of 2% urea treated sago fibre was 47.5% and intake of the fibre was 1.57% of body weight of the lamb.

Effects of Nitrogen Source and Organic Matter on Growth and Quality of Zoysia japonica Steud. (질소 급원과 유기물 시용이 들잔디의 생육 및 품질에 미치는 영향)

  • 이용범;황규석;배공영
    • Asian Journal of Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.24-30
    • /
    • 1990
  • This study was carried out to search for growth and quality -of turfgrass by Nitrogen source (Urea Ammonium sulphate) and organic matter, and to obtain methods of pr6per turfgrass management by the results. This experiment was conducted in turf field from 1988 to 1989. The results of this experiment was summarized as follows; 1.Without application of organic matter, turfgrass growth between urea and ammonium sulphate was not significant, however ammonium sulphate resulted in superior to urea in total dry weight when organic matter was applied. 2.The addition of organic matter showed significant effect on color rating and visible quality, and ammonium sulphate was higher quality than urea. 3.Shoot density increased, particularly in ammonium sulphate treatment, when organic matter was applied. 4.Rhizome and stolon were shown significant effect in urea treatment by the application of organic matter. 5.Surface soil pH was allowed to become slightly acid by the ammonium sulphate treatments, but soil acidity remained mostly unaffected when organic matter was supplied. 6.Total nitrogen of log tissue and organic matter content increased when organic matter w-as applied.

  • PDF

DEGRADATION CHARACTERISTICS OF SOME TROPICAL FEEDS IN THE RUMEN

  • Navaratne, H.V.R.G.;Ibrahim, M.N.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 1988
  • The rumen degradability of rice straw (untreated, urea-sprayed, urea-treated), grasses (Panicum maximum, Pennisetum clandestinum) and rice bran was compared. The mean in vivo organic matter digestibility of the untreated (US), urea-supplemented (SS) and urea-ammonia treated (TS) rice straw were 50.9, 53.9 and 57.4%, respectively. Rice bran contained extremely high levels of acid-insoluble ash (25.2% DM), and its OMD was 36.1%. Grasses had OMD values around 66%. Degradability measurements were performed with buffaloes using the nylon bag technique. The organic matter (OM) disappearance data were fitted to an model which was used to describe degradation pattern. The mean potentially degradable fraction for US, SS and TS was 61.5, 61.9 and 69.4%, respectively. Urea-ammonia treatment increased both the amount of OM degraded and the rate at which it was degraded in the rumen. Both grasses had similar values for degradable fraction (around 65%) and for rate constant for degradation (0.04). Rice bran contained high proportions of readily soluble material (23.9%), but the degradable OM fraction was only 13.2%. The low quality of rice bran is attributed to the contamination of rice hulls during processing.

Characterization of SCR System for NOx Reduction of Diesel Engine (II) (디젤엔진의 질소산화물 저감을 위한 Urea SCR 시스템 특성 분석 (II))

  • Lee, Joon-Seong;Kim, Nam-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.83-89
    • /
    • 2008
  • The Effect of Space Velocity(SV) on NOx conversion rate was performed to develop NOx reduction after-treatment system. SV is calculated from engine exhaust gas volume and SCR catalyst volume. Found the Urea injection duty of maximum efficiency for NOx conversion if increase SV, NOx Conversion rate is down. Especially, when SV is more than $110,000h^{-1}$, NOx conversion rate decrease suddenly. Same case, if SV is lower than $40,000h^{-1}$, NOx conversion rate is down. Also, the characterization of Urea-SCR system was performed. Three candidate injectors for injecting Urea were tested in terms of 속 injection rate and NOx reduction rate. The performances of SCR catalytic converter on temperature were investigated. The performance of Urea-SCR system was estimated in the NEDC test cycle with and without EGR. It was found that nozzle type injector had high NOx conversion rate. SCR catalytic converter had the highest efficiency at the temperature of $350^{\circ}C$. EGR+Urea-SCR system achieved NOx reduction efficiency of 73% through the NEDC test cycle.

The Spray Characteristics and Spray Behavior Characteristic in Exhaust Gas Flow of Urea Solution Injector (Urea 수용액 분사용 인젝터의 분무 특성과 배기관내 분무 거동 특성)

  • Oh, Jung-Mo;Han, Young-Deok;Kim, Ki-Bum;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.999-1004
    • /
    • 2010
  • Recently, many technologies have been developed in order to satisfy stringent emission regulations. However, in the case of diesel engines, the stringent emission regulations with respect to NOx and PM have not yet been satisfied. A dramatic reduction in the NOx and PM emissions could be achieved by using after-treatment systems such as lean NOx trap (LNT) and urea-SCR systems. However, the high temperature in the exhaust pipe affects the spray behavior of the secondary injector, which is used for supplying the Urea-SCR. Because of this high temperature, it is difficult to achieve uniform distribution of the reducing agent in the manifold. In this paper, the characteristics of a urea-SCR injector used for injecting in the exhaust pipe are presented. The purpose of this study was to investigate the spray characteristics of the injector, such as the spray angle, injection quantity, and SMD. In addition, laser diagnostics and high-speed-camera images were used to analyze the injector spray characteristics and to present a distribution of reduction in the transparent manifold.

A Study on the Characteristic and Droplet Uniformity of Spray Injection to Exhaust Gas Flow from Urea Solution Injector (Urea 수용액의 배기가스 유동장내 분무 특성과 분무 균일도에 관한 연구)

  • Oh, Jung-Mo;Cha, Won-Sim;Kim, Ki-Bum;Lee, Jin-Ha;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • Diesel engines can produce higher fuel efficiency and lower $CO_2$ emission, they are subject to ever more stringent emission regulation. However, there are two major emission concerns fo diesel engines like such as particulate matter (PM) and nitrogen oxides (NOx). Moreover, it is not easy to satisfy the regulations on the emission of NOx and PM, which are getting more strengthened. One of the solutions is to apply the new combustion concept using multistage injection such as HCCI and PCCI. The other solution is to apply after-treatment systems. For example, lean NOx trap catalyst, Urea-SCR and others have various advantages and disadvantages Especially, Urea-SCR system have advantages such as a high conversion efficiency and a wide operation conditions. Hence the key factor to implementation of Urea-SCR technology, good mixing of urea(Ammonia) and gas, reducing Ammonia slip. Urea mixer components are required to facilitate evaporation and mixing because the liquid state of urea poses significant barriers for evaporation, and the distance to mixer is the most critical that affect mixer performance. In this study, to find out the distance from injector to mixer and simulation factor, a laser diagnostics and high speed camera are used to analyze urea injector spray characteristics and to present a distribution of urea solution in transparent manifold In addition, Droplet Uniformity Index is calculated from the acquired images by using image processing method to clarify the distribution of spray.

THE USE OF MULTIVARIATE STATISTICS TO EVALUATE THE RESPONSE OF RICE STRAW VARIETIES TO CHEMICAL TREATMENT

  • Vadiveloo, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.1
    • /
    • pp.83-89
    • /
    • 1996
  • Multivariate statistical procedures were used to analyse data on the chemical composition and in vitro digestibility of four varienties of rice straw after treatment with 4% NaOH solution, 4% urea solution or distilled water (control) for 48 hours. For each treatment, stepwise discriminant analysis identified the variables which maximized differences between varieties and the eigenvectors from principal component analysis quantified the contribution of these criterion variables to varietal differences. The overall response of varieties to chemical treatment was demonstrated qualitatively, by cluster analysis, and quantitatively, from the magnitude of the principal component scores. The analysis revealed that the urea and control treatments elicited the same response whereas NaOH had the greatest effect on the poorest straw variety. Similar analyses conducted on the botanical fractions of the varieties showed that the relative response of the inflorescence, stem, leaf blade and leaf sheath fractions was not altered by chemical treatment.