• 제목/요약/키워드: Urdu language

검색결과 7건 처리시간 0.018초

A Methodology for Urdu Word Segmentation using Ligature and Word Probabilities

  • Khan, Yunus;Nagar, Chetan;Kaushal, Devendra S.
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.24-31
    • /
    • 2012
  • This paper introduce a technique for Word segmentation for the handwritten recognition of Urdu script. Word segmentation or word tokenization is a primary technique for understanding the sentences written in Urdu language. Several techniques are available for word segmentation in other languages but not much work has been done for word segmentation of Urdu Optical Character Recognition (OCR) System. A method is proposed for word segmentation in this paper. It finds the boundaries of words in a sequence of ligatures using probabilistic formulas, by utilizing the knowledge of collocation of ligatures and words in the corpus. The word identification rate using this technique is 97.10% with 66.63% unknown words identification rate.

Syntactic Structured Framework for Resolving Reflexive Anaphora in Urdu Discourse Using Multilingual NLP

  • Nasir, Jamal A.;Din, Zia Ud.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1409-1425
    • /
    • 2021
  • In wide-ranging information society, fast and easy access to information in language of one's choice is indispensable, which may be provided by using various multilingual Natural Language Processing (NLP) applications. Natural language text contains references among different language elements, called anaphoric links. Resolving anaphoric links is a key problem in NLP. Anaphora resolution is an essential part of NLP applications. Anaphoric links need to be properly interpreted for clear understanding of natural languages. For this purpose, a mechanism is desirable for the identification and resolution of these naturally occurring anaphoric links. In this paper, a framework based on Hobbs syntactic approach and a system developed by Lappin & Leass is proposed for resolution of reflexive anaphoric links, present in Urdu text documents. Generally, anaphora resolution process takes three main steps: identification of the anaphor, location of the candidate antecedent(s) and selection of the appropriate antecedent. The proposed framework is based on exploring the syntactic structure of reflexive anaphors to find out various features for constructing heuristic rules to develop an algorithm for resolving these anaphoric references. System takes Urdu text containing reflexive anaphors as input, and outputs Urdu text with resolved reflexive anaphoric links. Despite having scarcity of Urdu resources, our results are encouraging. The proposed framework can be utilized in multilingual NLP (m-NLP) applications.

Building a text collection for Urdu information retrieval

  • Rasheed, Imran;Banka, Haider;Khan, Hamaid M.
    • ETRI Journal
    • /
    • 제43권5호
    • /
    • pp.856-868
    • /
    • 2021
  • Urdu is a widely spoken language in the Indian subcontinent with over 300 million speakers worldwide. However, linguistic advancements in Urdu are rare compared to those in other European and Asian languages. Therefore, by following Text Retrieval Conference standards, we attempted to construct an extensive text collection of 85 304 documents from diverse categories covering over 52 topics with relevance judgment sets at 100 pool depth. We also present several applications to demonstrate the effectiveness of our collection. Although this collection is primarily intended for text retrieval, it can also be used for named entity recognition, text summarization, and other linguistic applications with suitable modifications. Ours is the most extensive existing collection for the Urdu language, and it will be freely available for future research and academic education.

Deep recurrent neural networks with word embeddings for Urdu named entity recognition

  • Khan, Wahab;Daud, Ali;Alotaibi, Fahd;Aljohani, Naif;Arafat, Sachi
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.90-100
    • /
    • 2020
  • Named entity recognition (NER) continues to be an important task in natural language processing because it is featured as a subtask and/or subproblem in information extraction and machine translation. In Urdu language processing, it is a very difficult task. This paper proposes various deep recurrent neural network (DRNN) learning models with word embedding. Experimental results demonstrate that they improve upon current state-of-the-art NER approaches for Urdu. The DRRN models evaluated include forward and bidirectional extensions of the long short-term memory and back propagation through time approaches. The proposed models consider both language-dependent features, such as part-of-speech tags, and language-independent features, such as the "context windows" of words. The effectiveness of the DRNN models with word embedding for NER in Urdu is demonstrated using three datasets. The results reveal that the proposed approach significantly outperforms previous conditional random field and artificial neural network approaches. The best f-measure values achieved on the three benchmark datasets using the proposed deep learning approaches are 81.1%, 79.94%, and 63.21%, respectively.

Urdu News Classification using Application of Machine Learning Algorithms on News Headline

  • Khan, Muhammad Badruddin
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.229-237
    • /
    • 2021
  • Our modern 'information-hungry' age demands delivery of information at unprecedented fast rates. Timely delivery of noteworthy information about recent events can help people from different segments of life in number of ways. As world has become global village, the flow of news in terms of volume and speed demands involvement of machines to help humans to handle the enormous data. News are presented to public in forms of video, audio, image and text. News text available on internet is a source of knowledge for billions of internet users. Urdu language is spoken and understood by millions of people from Indian subcontinent. Availability of online Urdu news enable this branch of humanity to improve their understandings of the world and make their decisions. This paper uses available online Urdu news data to train machines to automatically categorize provided news. Various machine learning algorithms were used on news headline for training purpose and the results demonstrate that Bernoulli Naïve Bayes (Bernoulli NB) and Multinomial Naïve Bayes (Multinomial NB) algorithm outperformed other algorithms in terms of all performance parameters. The maximum level of accuracy achieved for the dataset was 94.278% by multinomial NB classifier followed by Bernoulli NB classifier with accuracy of 94.274% when Urdu stop words were removed from dataset. The results suggest that short text of headlines of news can be used as an input for text categorization process.

An Arabic Script Recognition System

  • Alginahi, Yasser M.;Mudassar, Mohammed;Nomani Kabir, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3701-3720
    • /
    • 2015
  • A system for the recognition of machine printed Arabic script is proposed. The Arabic script is shared by three languages i.e., Arabic, Urdu and Farsi. The three languages have a descent amount of vocabulary in common, thus compounding the problems for identification. Therefore, in an ideal scenario not only the script has to be differentiated from other scripts but also the language of the script has to be recognized. The recognition process involves the segregation of Arabic scripted documents from Latin, Han and other scripted documents using horizontal and vertical projection profiles, and the identification of the language. Identification mainly involves extracting connected components, which are subjected to Principle Component Analysis (PCA) transformation for extracting uncorrelated features. Later the traditional K-Nearest Neighbours (KNN) algorithm is used for recognition. Experiments were carried out by varying the number of principal components and connected components to be extracted per document to find a combination of both that would give the optimal accuracy. An accuracy of 100% is achieved for connected components >=18 and Principal components equals to 15. This proposed system would play a vital role in automatic archiving of multilingual documents and the selection of the appropriate Arabic script in multi lingual Optical Character Recognition (OCR) systems.

Impact of a Breast Health Awareness Activity on the Knowledge Level of the Participants and its Association with Socio-Demographic Features

  • Khokher, Samina;Qureshi, Muhammad Usman;Fatima, Warda;Mahmood, Saqib;Saleem, Afaf
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.5817-5822
    • /
    • 2015
  • The developing countries have higher mortality rates for breast cancer. A reason for this is presentation at advanced stages due to low levels of public awareness. Activities are arranged by health authorities of developing countries to increase the knowledge of women but their effectiveness has not been evaluated in detail. A multiple choice questionnaire with questions about socio-demographic profile and questions about breast cancer knowledge was designed in local language Urdu, to evaluate the knowledge of the participants before and after an audio visual educational activity in Lahore, Pakistan. Scores of 0-2, 3-5 and 6-8 were ranked as poor, fair and good, respectively. Among 146 participants these scores were achieved by 1%, 55% and 45% before activity and 0%, 16% and 84% after the activity. Overall 66% of participants increased their knowledge score. Younger age, higher education, reliance on television as source of information and being a housewife were associated with better impact of the awareness activity. For the six knowledge related questions 3%, 5%, 11%, 23%, 33% and 44% more participants gave correct answers after the activity. However 6% and 7% fewer participants answered correctly for 2 questions related to the cause and the best prevention for breast cancer. The study indicated that awareness activities are effective to increase the knowledge of women and better impact is associated with higher education and younger age of women. The component analysis showed that the questions and related presentations using medical terms have a negative impact and should not therefore be used. Analysis of activity therefore leads to identification of deficiencies which can be remedied in future.