• Title/Summary/Keyword: Urbanized MM5

Search Result 8, Processing Time 0.02 seconds

Analysis of Sea-breeze Frontogenesis over the Coastal Urban Area Using Urbanized MM5 (도시형 중규모기상모델을 이용한 연안도시 해풍전선 발달 분석)

  • Hwang, Mi-Kyoung;Oh, In-Bo;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.416-425
    • /
    • 2011
  • To analyze the physical processes of sea-breeze development over a coastal urban area, numerical simulation for seabreeze (SB) and its frontogenesis was examined based on urbanized MM5 (uMM5) with urban canopy parameterization. On 6 August 2006, SB and its front were well developed in Busan under a weak offshore flow. As a result of wind vector, ZVB (Zero Velocity Boundary), potential temperature obtained the uMM5, at 0900 LST, SB advanced below 200 m height in the coastal areas and the internal boundary grew with the urban coastal region. At noon, the height of the SB head with updraft was approximately one and a half times (~600 m) higher than its depth in central urban. Applying the frontogenesis function, the SB structure for frontogenesis and frontolysis were complicated spatially; the dynamic effects of wind (i.e. convergence and tilting term) could play an important role in the growth of SB, especially the convergence effect.

Numerical Modeling for the Effect of High-rise Buildings on Meteorological Fields over the Coastal Area Using Urbanized MM5 (중/도시규모 기상모델을 이용한 고층건물군이 연안도시기상장에 미치는 영향 수치모델링)

  • Hwang, Mi-Kyoung;Oh, In-Bo;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.495-505
    • /
    • 2012
  • Modeling the effects of high-rise buildings on thermo-dynamic conditions and meteorological fields over a coastal urban area was conducted using the modified meso-urban meteorological model (Urbanized MM5; uMM5) with the urban canopy parameterization (UCP) and the high-resolution inputs (urban morphology, land-use/land-cover sub-grid distribution, and high-quality digital elevation model data sets). Sensitivity simulations was performed during a typical sea-breeze episode (4~8 August 2006). Comparison between simulations with real urban morphology and changed urban morphology (i.e. high-rise buildings to low residential houses) showed that high-rise buildings could play an important role in urban heat island and land-sea breeze circulation. The major changes in urban meteorologic conditions are followings: significant increase in daytime temperature nearly by $1.0^{\circ}C$ due to sensible heat flux emitted from high density residential houses, decrease in nighttime temperature nearly by $1.0^{\circ}C$ because of the reduction in the storage heat flux emitted from high-rise buildings, and large increase in wind speed (maximum 2 m $s^{-1}$) during the daytime due to lessen drag-force or increased gradient temperature over coastal area.

High-resolution Simulation of Meteorological Fields over the Coastal Area with Urban Buildings (건물효과를 고려한 연안도시지역 고해상도 기상모델링)

  • Hwang, Mi-Kyoung;Kim, Yoo-Keun;Oh, In-Bo;Kang, Yoon-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.137-150
    • /
    • 2010
  • A meso-urban meteorological model (Urbanized MM5; uMM5) with urban canopy parameterization (UCP) was applied to the high-resolution simulation of meteorological fields in a complex coastal urban area and the assessment of urban impacts. Multi-scale simulations with the uMM5 in the innermost domain (1-km resolution) covering the Busan metropolitan region were performed during a typical sea breeze episode (4~8 August 2006) with detailed fine-resolution inputs (urban morphology, land-use/land-cover sub-grid distribution, and high-quality digital elevation model data sets). An additional simulation using the standard MM5 was also conducted to identify the effects of urban surface properties under urban meteorological conditions. Results showed that the uMM5 reproduced well the urban thermal and dynamic environment and captured well the observed feature of sea breeze. When comparison with simulations of the standard MM5, it was found that the uMM5 better reproduced urban impacts on temperature (especially at nighttime) and urban wind flows: roughness-induced deceleration and UHI (Urban Heat Island)-induced convergence.

Safety Analysis of the Flood Control of Urban River in Flash Flood (돌발홍수 발생시 도시하천의 치수안전도 분석)

  • Park, Ho-Sang;Sim, Ou-Bae;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.125-132
    • /
    • 2003
  • In this study, safety analysis of river in flash flood due to local extraordinary rainfall was conducted for the Hong-Je river, which was selected as a representative sample basin because it is one of the most urbanized rivers in Seoul. The rainfall data of precipitation 310.1 mm and probable maximum precipitation (PMP) 740.0 mm in July $14{\sim}15$, 2001 was used to perform safety analysis. Resulting of safety analysis of the flood control in Hong-Je river, case of the 50 year of design frequency, safety section, management section, and danger section were represented to be 85%, 15%, and 0% respectively. For the 200 year of design frequency, safety section decreased by 6% and management section and danger section increment by 4% and 2%, respectively, The variation of management section was not observed with respect to 200 year of frequency. Little variation of safety value for management section for 300 and 500 of frequency increased by 8% and 12% relative to 50 year of frequency, respectively. management section and danger section for 1000 year of frequency increased by 19% and 13% relative to 50 year of frequency.

The relationship between the population characteristics and physical habitat of Manchurian trout(Brachymystax lenok tsinlingensis) in the Geybangcheon stream (계방천에 서식하는 열목어의 개체군 특성 및 물리적 서식환경과의 상관관계)

  • Ko, Min Seop;Choi, Jun Kil;Lee, Hwang Goo
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.108-118
    • /
    • 2021
  • The purpose of this study was to provide baseline ecological data for the conservation of the Manchurian trout habitat through the investigation of the growth status of Brachymystax lenok tsinlingensis, and Pearson's correlation analysis (PCA) between the B. lenok tsinlingensis population and the use of the land around Gyebangcheon stream. Sampling was conducted twice in July, September, and October 2018. During the July and September surveys, 882 individuals belonging to 13 species from six families were collected. The dominant species was Rhynchocypris kumgangensis and the subdominant species was Zacco koreanus. The total number of B. lenok tsinlingensis collected was 99. The results of the length-weight relationship in the B. lenok tsinlingensis population were analyzed with a regression coefficient b value of 3.1272 and a condition factor (k) value of 0.0006. Therefore, the growth condition of B. lenok tsinlingensis was regarded as fairly good. The QHEI(Qualitative habitat evaluation index) value in the B. lenok tsinlingensis habitat was 119.5(±0.5)-153.5(±0.5), indicating optimal-suboptimal conditions. As a result of the HIS (Habitat suitability index) analysis, it was confirmed that the optimal habitat for B. lenok tsinlingensis was 0.45-0.55m and >1 m in water depth, 0.55-0.65 m s-1 in water velocity, and boulder in the substrate. The ratio of the land use in this study site was analyzed as 66.26-96.31% for forest and grassland areas, 0.00-23.79% for agricultural areas, 0.00-4.19% for urbanized areas, and 3.69-8.87% for others. Correlation analysis of the number of B. lenok tsinlingensis and various factors revealed statistically significant correlations between QHEI and forest and grassland areas, agricultural areas, and urbanized areas.

Determination of flood-inducing rainfall and runoff for highly urbanized area based on high-resolution radar-gauge composite rainfall data and flooded area GIS Data

  • Anh, Dao Duc;Kim, Dongkyun;Kim, Soohyun;Park, Jeongha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.157-157
    • /
    • 2019
  • This study derived the Flood-Inducing-Rainfall (FIR) and the Flood-Inducing-Runoff (FIRO) from the radar-gage composite data to be used as the basis of the flood warning initiation for the urban area of Seoul. For this, we derived the rainfall depth-duration relationship for the 261 flood events at 239 watersheds during the years 2010 and 2011 based on the 10-minute 1km-1km radar-gauge composite rainfall field. The relationship was further refined by the discrete ranges of the proportion of the flooded area in the watershed (FP) and the coefficient variation of the rainfall time series (CV). Then, the slope of the straight line that contains all data points in the depth-duration relationship plot was determined as the FIR for the specified range of the FP and the CV. Similar methodology was applied to derive the FIRO, which used the runoff depths that were estimated using the NRCS Curve Number method. We found that FIR and FIRO vary at the range of 37mm/hr-63mm/hr and the range of 10mm/hr-42mm/hr, respectively. The large variability was well explained by the FP and the CV: As the FP increases, FIR and FIRO increased too, suggesting that the greater rainfall causes larger flooded area; as the rainfall CV increases, FIR and FIRO decreased, which suggests that the temporally concentrated rainfall requires less total of rainfall to cause the flood in the area. We verified our result against the 21 flood events that occurred for the period of 2012 through 2015 for the same study area. When the 5 percent of the flooded area was tolerated, the ratio of hit-and-miss of the warning system based on the rainfall was 44.2 percent and 9.5 percent, respectively. The ratio of hit-and-miss of the warning system based on the runoff was 67 percent and 4.7 percent, respectively. Lastly, we showed the importance of considering the radar-gauge composite rainfall data as well as rainfall and runoff temporal variability in flood warning system by comparing our results to the ones based on the gauge-only or radar-only rainfall data and to the one that does not account for the temporal variability.

  • PDF

Evaluation of Flood Regulation Service of Urban Ecosystem Using InVEST mode (InVEST 모형을 이용한 도시 생태계의 홍수 조절서비스 평가)

  • Lee, Tae-ho;Cheon, Gum-sung;Kwon, Hyuk-soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.51-64
    • /
    • 2022
  • Along with the urbanization, the risk of urban flooding due to climate change is increasing. Flood regulation, one of the ecosystem services, is implemented in the different level of function of flood risk mitigation by the type of ecosystem such as forests, arable land, wetlands etc. Land use changes due to development pressures have become an important factor in increasing the vulnerability by flash flood. This study has conducted evaluating the urban flood regulation service using InVEST UFRM(Urban Flood Risk Model). As a result of the simulation, the potential water retention by ecosystem type in the event of a flash flood according to RCP 4.5(10 year frequency) scenario was 1,569,611 tons in urbanized/dried areas, 907,706 tons in agricultural areas, 1,496,105 tons in forested areas, 831,705 tons in grasslands, 1,021,742 tons in wetlands, and 206,709 tons in bare areas, the water bodies was estimated to be 38,087 tons. In the case of more severe 100-year rainfall, 1,808,376 tons in urbanized/dried areas, 1,172,505 tons in agricultural areas, 2,076,019 tons in forests, 1,021,742 tons in grasslands, 47,603 tons in wetlands, 238,363 tons in bare lands, and 52,985 tons in water bodies. The potential economic damage from flood runoff(100 years frequency) is 122,512,524 thousand won in residential areas, 512,382,410 thousand won in commercial areas, 50,414,646 thousand won in industrial areas, 2,927,508 thousand won in Infrastructure(road), 8,907 thousand won in agriculture, Total of assuming a runoff of 50 mm(100 year frequency) was estimated at 688,245,997 thousand won. In a conclusion. these results provided an overview of ecosystem functions and services in terms of flood control, and indirectly demonstrated the possibility of using the model as a tool for policy decision-making. Nevertheless, in future research, related issues such as application of models according to various spatial scales, verification of difference in result values due to differences in spatial resolution, improvement of CN(Curved Number) suitable for the research site conditions based on actual data, and development of flood damage factors suitable for domestic condition for the calculation of economic loss.

Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed (II) - Establishment of Intercepting Capacity and Reduction Goal of Overflow Pollution Load - (오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(II) - 차집용량과 월류오염부하 삭감목표 설정 -)

  • Lee, Doojin;Shin, EungBai
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.557-564
    • /
    • 2005
  • The objective of this study is to evaluate a criteria of intercepting capacity and a reduction goal of overflow pollution load in combined sewer system. In the current criteria of intercepting capacity in the domestic sewage facility standard, it is known that three times of peak sewage (Q) in dry period or runoff flow by 2mm/hr is not appropriate since the intercepted flow is estimated by runoff and show different result even in the same watershed. Though a reduction goal of overflow pollution load can be determined from 1) same level of storm-water runoff pollution load in separated storm sewer, 2) less than 5% sewage load in dry weather period, by the domestic sewage facility standard, the simulated results from storm-water model show large differences between two criteria. While it is predicted that sewage pollution load standard three time larger than separated storm sewer standard in high population density and urbanized area, it is shown that separate storm sewer standard larger than sewage pollution load standard in middle population density and developing area. Accordingly, it is proposed that more reasonable intercepting flow and reduction goal of overflows pollution load should be established to minimize discharging pollution load in combined sewer systems. For the purpose, a resonable standard has to be amended by pollution load balance considering the characteristics of a watershed for generation, collection, treatment, and discharging flow.