• Title/Summary/Keyword: Urban simulation

Search Result 1,230, Processing Time 0.036 seconds

Effect of irrigation reservoir, antecedent soil moisture condition and Huff time distribution on peak discharge in a basin (농업용 저수지, 선행토양함수조건 및 Huff 시간 분포가 유역의 첨두홍수량에 미치는 영향 분석)

  • Kwon, Minsung;Ahn, Jae-Hyun;Jun, Kyung Soo;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.417-424
    • /
    • 2018
  • This study analyzed the effect of irrigation reservoirs, antecedent soil moisture conditions (AMC) and Huff time distribution on peak discharge using Monte Carlo simulation. The peak discharge was estimated for four different cases in combination of irrigation reservoir capacity, AMC, and Huff time distribution. Applying 100% reservoir capacity or AMC-III, the peak discharges corresponding return periods of 50~300 years were overestimated by 25~30% compared to those of cases that considered the probability of occurrence for individual condition. Applying the 3rd quantile huff distribution, the peak discharges were overestimated by 5% over the peak discharge that considered the probability of occurrence. The overall results indicated that the effect on the peak flood of Huff distribution was less than AMC and reservoir storage.

A study on proposal of design aqueduct be considered for rural landscape on Agricultural Hydraulic Structures (농촌경관을 고려한 수로교 디자인 방안 연구)

  • Kim, Meyong-Won;Kim, Kwan-Ho;Cho, Young-Kweon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1013-1016
    • /
    • 2008
  • The demands of urban people for rural natural environments will increase but poor and low level of infrastructure facilities delay the development of green tourism villages as an attractive green tour destination. The objective of this paper are to offered a rural landscape improvement simulation of a aqueduct and designing that to meet the needs of the community.

  • PDF

A Semi-Automatic Building Modeling System Using a Single Satellite Image (단일 위성 영상 기반의 반자동 건물 모델링 시스템)

  • Oh, Seon-Ho;Jang, Kyung-Ho;Jung, Soon-Ki
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.451-462
    • /
    • 2009
  • The spread of satellite image increases various services using it. Especially, 3D visualization services of the whole earth such as $Google\;Earth^{TM}$ and $Virtual\;Earth^{TM}$ or 3D GIS services for several cities provide realistic geometry information of buildings and terrain of wide areas. These service can be used in the various fields such as urban planning, improvement of roads, entertainment, military simulation and emergency response. The research about extracting the building and terrain information effectively from the high-resolution satellite image is required. In this paper, presents a system for effective extraction of the building model from a single high-resolution satellite image, after examine requirements for building model extraction. The proposed system utilizes geometric features of satellite image and the geometric relationship among the building, the shadow of the building, the positions of the sun and the satellite to minimize user interaction. Finally, after extracting the 3D building, the fact that effective extraction of the model from single high-resolution satellite will be show.

Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers

  • Kaur, Naveet;Matsagar, V.A.;Nagpal, A.K.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.311-332
    • /
    • 2012
  • Earthquake response of mid-rise to high-rise buildings provided with friction dampers is investigated. The steel buildings are modelled as shear-type structures and the investigation involved modelling of the structures of varying heights ranging from five storeys to twenty storeys, in steps of five storeys, subjected to real earthquake ground motions. Three basic types of structures considered in the study are: moment resisting frame (MRF), braced frame (BF), and friction damper frame (FDF). Mathematical modelling of the friction dampers involved simulation of the two distinct phases namely, the stick phase and the slip phase. Dynamic time history analyses are carried out to study the variation of the top floor acceleration, top floor displacement, storey shear, and base-shear. Further, energy plots are obtained to investigate the energy dissipation by the friction dampers. It is seen that substantial earthquake response reduction is achieved with the provision of the friction dampers in the mid-rise and high-rise buildings. The provision of the friction dampers always reduces the base-shear. It is also seen from the fast Fourier transform (FFT) of the top floor acceleration that there is substantial reduction in the peak response; however, the higher frequency content in the response has increased. For the structures considered, the top floor displacements are lesser in the FDF than in the MRF; however, the top floor displacements are marginally larger in the FDF than in the BF.

A MOM-based algorithm for moving force identification: Part I - Theory and numerical simulation

  • Yu, Ling;Chan, Tommy H.T.;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.135-154
    • /
    • 2008
  • The moving vehicle loads on a bridge deck is one of the most important live loads of bridges. They should be understood, monitored and controlled before the bridge design as well as when the bridge is open for traffic. A MOM-based algorithm (MOMA) is proposed for identifying the timevarying moving vehicle loads from the responses of bridge deck in this paper. It aims at an acceptable solution to the ill-conditioning problem that often exists in the inverse problem of moving force identification. The moving vehicle loads are described as a combination of whole basis functions, such as orthogonal Legendre polynomials or Fourier series, and further estimated by solving the new system equations developed with the basis functions. A number of responses have been combined, some numerical simulations on single axle, two axle and multiple-axle loads, being either constant or timevarying, have been carried out and compared with the existing time domain method (TDM) in this paper. The illustrated results show that the MOMA has higher identification accuracy and robust noise immunity as well as producing an acceptable solution to ill-conditioning cases to some extent when it is used to identify the moving force from bridge responses.

Flow-conditioning of a subsonic wind tunnel to model boundary layer flows

  • Ghazal, Tarek;Chen, Jiaxiang;Aboutabikh, Moustafa;Aboshosha, Haitham;Elgamal, Sameh
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.339-366
    • /
    • 2020
  • This study aims at modeling boundary layers (BLs) encountered in sparse and built environments (i.e. open, suburban and urban) at the subsonic Wind Tunnel (WT) at Ryerson University (RU). This WT has an insignificant turbulence intensity and requires a flow-conditioning system consisting of turbulence generating elements (i.e., spires, roughness blocks, barriers) to achieve proper turbulent characteristics. This system was developed and validated in the current study in three phases. In phase I, several Computational Fluid Dynamic (CFD) simulations of the tunnel with generating elements were conducted to understand the effect of each element on the flow. This led to a preliminary design of the system, in which horizontal barriers (slats) are added to the spires to introduce turbulence at higher levels of the tunnel. This design was revisited in phase II, to specify slat dimensions leading to target BLs encountered by tall buildings. It was found that rougher BLs require deeper slats and, therefore, two-layer slats (one fixed and one movable) were implemented to provide the required range of slat depth to model most BLs. This system only involves slat movement to change the BL, which is very useful for automatic wind tunnel testing of tall buildings. The system was validated in phase III by conducting experimental wind tunnel testingof the system and comparing the resulting flow field with the target BL fields considering two length scales typically used for wind tunnel testing. A very good match was obtained for all wind field characteristics which confirms accuracy of the system.

Lumped Parameter Modeling and Analysis of Electromagnetic Vibration Exciter for Vibrating Rapper of Electrostatic Precipitator (전기 집진기의 진동 탈진을 위한 전자기 진동 가진기의 집중매개변수 모델링 및 해석)

  • Kim, Je-Hoon;Lee, Jung-Hun;Kim, Jin-Ho;Jeong, Sang-Hyun;Han, Bang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • The miniaturization of electrostatic precipitator is becoming a key element to the success of the efficient electrostatic precipitator due to the limited space allowed to install electrostatic precipitator in subway tunnel. Nowadays, a research on electrostatic precipitator in urban railroad equipment technology is under an active study. Finite element method has been used one of the most popular techniques, but it consumes a lot of time especially in computation iterations. Accordingly, the lumped parameter analysis can be an alternative tool to FEM because of its computation iteration capability with fair accuracy. In this paper, lumped parameter model and the simulation results are presented. In addition, the result of lumped parameter analysis is compared with those obtained from finite element analysis for verification.

Collapse Behavior of an 18-Story Steel Moment Frame during a Shaking Table Test

  • Suita, Keiichiro;Suzuki, Yoshitaka;Takahashi, Motomi
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • A shaking table test was conducted at the E-Defense shaking table facility to investigate the damage and collapse behavior of a steel high-rise building under exceedingly large ground motions. The specimen is a one-third scale 18-story steel moment frame designed and constructed according to design specifications and practices used in the 1980s and 1990s. The shaking table tests used a long-duration, long-period ground motion simulated for a sequential Tokai, Nankai, and Nankai earthquake scenario. The building specimen was subjected to a series of progressively increasing scaled motions until it completely collapsed. The damage to the steel frame began through the yielding of beams along lower stories and column bases of the first story. After several excitations by increasing scaled motions, cracks initiated at the welded moment connections and fractures in the beam flanges spread to the lower stories. As the shear strength of each story decreased, the drifts of lower stories increased and the frame finally collapsed and settled on the supporting frame. From the test, a typical progression of collapse for a tall steel moment frame was obtained, and the hysteretic behavior of steel structural members including deterioration due to local buckling and fracture were observed. The results provide important information for further understanding and an accurate numerical simulation of collapse behavior.

Structural System Selection and Highlights of Changsha IFC T1 Tower

  • Jianlong, Zhou;Daoyuan, Lu;Liang, Huang;Jun, Ji;Jun, Zhu;Jingyu, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • This paper presents the determination of the structural system of the Changsha IFC T1 tower with 452 m in architectural height and 440.45 m in structural height. Sensitivity analyses are carried out by varying the location of belt trusses and outriggers. The enhancement of seismic capacity of the outer frame by reasonably adjusting the column size is confirmed based on parametric studies. The results from construction simulation including the non-load effect of structures demonstrate that the deformation of vertical members has little effect on the load-bearing capacity of belt trusses and outriggers. The elastoplastic time-history analysis shows that the overall structure under rare earthquake load remains in an elastic state. The influence of the frame shear ratio and frame overturning moment ratio on the proposed model and equivalent mega column model is investigated. It is found that the frame overturning moment ratio is more applicable for judging the resistance of the outer frame against lateral loads. Comparison is made on the variation of these two effects between a classical frame-core tube-outrigger structure and a structure with diagonal braces between super columns under rare earthquakes. The results indicate that plasticity development of the top core cube of the braced structure may be significantly improved.

A Study on Simultaneous Adjustment of GNSS Baseline Vectors and Terrestrial Measurements

  • Nguyen, Dinh Huy;Lee, Hungkyu;Yun, Seonghyeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.415-423
    • /
    • 2020
  • GNSS (Global Navigation Satellite System) is mostly used for high-precise surveys due to its accuracy and efficiency. But this technique does not always fulfill the demanding accuracy in harsh operational environments such as urban canyon and forest. One of the remedies for overcoming this barrier is to compose a heterogeneous surveying network by adopting terrestrial measurements (i.e., distances and angles). Hence, this study dealt with the adjustment of heterogeneous surveying networks consisted of GNSS baseline vectors, distances, horizontal and vertical angles with a view to enhancing their accuracy and so as to derive an appropriate scheme of the measurement combination. Reviewing some technical issues of the network adjustments, the simulation, and experimental studies have been carried out, showing that the inclusion of the terrestrial measurements in the GNSS standalone overall increased the accuracy of the adjusted coordinates. Especially, if the distances, the horizontal angles, or both of them were simultaneously adjusted with GNSS baselines, the accuracy of the GNSS horizontal component was improved. Comparing the inclusion of the horizontal angles with those of the distances, the former has been more influential on accuracy than the latter even though the same number of measurements were employed in the network. On the other hand, results of the GNSS network adjustment together with the vertical angles demonstrated the enhancement of the vertical accuracy. As conclusion, this paper proposes a simultaneous adjustment of GNSS baselines and the terrestrial measurements for an effective scheme that overcomes the limitation of GNSS control surveys.