• Title/Summary/Keyword: Urban runoff analysis

Search Result 271, Processing Time 0.029 seconds

Analysis of Runoff Effect of Drainage System at Urban Watershed due to Urbanization (도시화에 따른 도시유역 배수계통의 유출영향분석에 관한 연구)

  • Seo, Kyu Woo;Heo, Jun Haeng;Cho, Won Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.80-90
    • /
    • 1997
  • The ILLUDAS and SWMM models were applied to the developing area of Dongsucheon for comparisons of the total runoff, peak discharge and travel time. For this purpose, the present and future urbanization rates were assumed 70% and 90%, respectively. The runoff analysis of two models has been performed based on 10, 20, 30 and 50 return periods and Huff's 4 quantiles for time distribution pattern of design rainfalls. As results, the total runoff based on Huff's pattern had an decreasing order of 1, 4, 3 and 2 quantiles for both models. The SWMM model showed that there were 4.3% increasing of the total runoff, 4.9% increasing of peak discharge, and 6.6% decreasing of travel time. Similarly, for ILLUDAS model, there were 7.3% and 9.2% increasing of total runoff and peak discharge, respectively and 9.1% decreasing of travel time.

  • PDF

도시 소하천 개발에 따른 유출 변화량의 모의기법에 관한 연구

  • 김성원;조정석
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1998
  • The objectives of this study Is to evaluate the total runoff yield, peak flow and peak flow travel time depending on the urbanization, return period and rainfall patterns at the downstream of Manchon urban watershed in TaeGu City. SWM(Storm Water Management Model) is used for runog analysis based on 5 different steps of urbanization and 4 different types of Hufrs quartile according to 8 return periods. It is analyzed that the order of total runoff yield according to raiun patterns is Huffs 4, Huffs 2. Huffs 3 and Huffs 1 quartile, that of peak flow magnitude is Huffs 2, Huffs 1, Huffs 4 and Huffs 3 quartile at present development ratio. under the 60, 70, 80 and 90ft of urbanization to the 50% of urbanization by means of the rainfall patterns, the mean Increasing ratio of total runoff yield for each case is 4.55, 11.43, 16.07 and 20.02%, that of peak flow is 5.82, 13.61, 17.15 and 18.83%, the mean decreasing ratio of peak flow travel time Is 0.00, 2.44, 5.07 and 6.26%, the mean increasing ratio of runoff depth Is 4.51, 11.42, 16.02 and 20.05% respectively. the mean increasing ratio of total runoff yield by means of each and 19.71%. Therefore, as the result of this study. it can be used for principal data as to storm sewage treatment and flood damage protection planning in urban small watershed.

  • PDF

Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model (도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

A Study on a Reasonable Choice of Simulation Model for Rainfall-Runoff in the Prior Review System on Disaster Effect (사전재해영향성검토 시 합리적인 홍수유출 모의모형 선정에 관한 연구)

  • Lee, Jung-Min;Yun, Jeong-Ran;Kim, Young-Jin;Jin, Kyu-Nam;Han, Hyung-Geun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 2010
  • Urban development is a cause of expansion of impervious area. A permanent storage is operated as a method of reducing runoff of watershed. The purpose of study is to propose reasonable choice of simulation model for rainfall-runoff in the prior review system on disaster effect. First, we indicated problem about concentration time choice in the flood simulation. To test the adequacy of a rainfall-runoff simulation model, We analyzed characteristics of rainfall-runoff about urban and natural watersheds. A simulation model was calibrated with the storm of july 7 to July 9 in 2009. From the result, we proposed that SWMM and kinematic wave method as the flood simulation models for urban and natural watersheds. A simulation model and design method of a permanent storage for flood that is proposed in this study will be useful for practical design of flood simulation. The hydrologic analysis method of the study can be used for capacity evaluation of permanent storage plan.

Development of a shot noise process based rainfall-runoff model for urban flood warning system (도시홍수예경보를 위한 shot noise process 기반 강우-유출 모형 개발)

  • Kang, Minseok;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.19-33
    • /
    • 2018
  • This study proposed a rainfall-runoff model for the purpose of real-time flood warning in urban basins. The proposed model was based on the shot noise process, which is expressed as a sum of shot noises determined independently with the peak value, decay parameter and time delay of each sub-basin. The proposed model was different from other rainfall-runoff models from the point that the runoff from each sub-basin reaches the basin outlet independently. The model parameters can be easily determined by the empirical formulas for the concentration time and storage coefficient of a basin and those of the pipe flow. The proposed model was applied to the total of three rainfall events observed at the Jungdong, Guro 1 and Daerim 2 pumping stations to evaluate its applicability. Summarizing the results is as follows. (1) The unit response function of the proposed model, different from other rainfall-runoff models, has the same shape regardless of the rainfall duration. (2) The proposed model shows a convergent shape as the calculation time interval becomes smaller. As the proposed model was proposed to be applied to urban basins, one-minute of calculation time interval would be most appropriate. (3) Application of the one-minute unit response function to the observed rainfall events showed that the simulated runoff hydrographs were very similar to those observed. This result indicates that the proposed model has a good application potential for the rainfall-runoff analysis in urban basins.

Accuracy evaluation of 2D inundation analysis results of simplified SWMM according to sewer network scale (하수관망 규모에 따른 단순화 SWMM에 대한 2차원 침수분석결과의 정확성 평가)

  • Lee, Jung-Hwan;Kang, Seong-gyu;Yuk, Gi-Moon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.531-543
    • /
    • 2019
  • Constructing a reliable runoff model and reducing model runtime are important in research of real-time urban flood forecasting to reduce the repetitive flood damage. Sewer networks in the major urban basin such as Seoul are vast and complex so that it is not suitable for real-time urban flood forecasting. Therefore, the rainfall-runoff model should be simplified. However, the runoff results due to the simplification of sewer networks can vary depending on the subjectivity and simplification method of the researcher and there is a significant difference especially in 2-D inundation analysis. In this study, the sewer networks in various urban basins with different numbers and distributions of sewer networks were simplified to certain criteria. The accuracy of the simplification model according to the sewer network scale is evaluated by 2-D inundation analysis. The runoff models of Gwanak, Sillim, and Dorimcheon, frequently inundated basins were simplified based on four simplification ranges due to the cumulative drainage area set as a criterion for calculating the simplification range. This study will be expected that the inundation result of simplification models estimated through the analysis can contribute to the construction of a reasonable and accurate runoff model suitable for real-time flood forecasting.

Evaluating characteristics of runoff responses by rainfall direction (호우 방향성에 의한 유역 유출응답 특성 평가)

  • Park, Changyeol;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.347-358
    • /
    • 2017
  • This study examined characteristic differences by the rainfall direction on the runoff responses. The directional characteristics of hydrological components in a basin were quantified by von Mises distribution. The runoff hydrograph was derived using the result of convolution integration of each distribution and this hydrograph was compared with GIUH model and observed data. As a result, it was found that runoff response by rainfall direction was more similar the observed rainfall-runoff data than the runoff result using GIUH model. These results implies that runoff modeling could be improved by considering directional components in hydrologic analysis. This study would be helpful to reduce uncertainties of hydrologic analysis considering a non-linearity of rainfall-runoff process by the rainfall direction.

Research of Runoff Management in Urban Area using Genetic Algorithm (유전자알고리즘을 이용한 도시화 유역에서의 유출 관리 방안 연구)

  • Lee, Beum-Hee
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.321-331
    • /
    • 2006
  • Recently, runoff characteristics of urban area are changing because of the increase of impervious area by rapidly increasing of population and industrialization, urbanization. It needs to extract the accurate topologic and hydrologic parameters of watershed in order to manage water resource efficiently. Thus, this study developed more precise input data and more improved parameter estimating procedures using GIS(Geographic Information System) and GA(Genetic Algorithm). For these purposes, XP-SWMM (EXPert-Storm Water Management Model) was used to simulate the urban runoff. The model was applied to An-Yang stream basin that is a typical Korean urban stream basin with several tributaries. The rules for parameter estimation were composed and applied based on quantity parameters that are investigated through the sensitivity analysis. GA algorithm is composed of these rules and facts. The conditions of urban flows are simulated using the rainfall-runoff data of the study area. The data of area, slope, width of each subcatchment and length, slope of each stream reach were acquired from topographic maps, and imperviousness rate, land use types, infiltration capacities of each subcatchment from land use maps, soil maps using GIS. Also we gave the management scheme of urbanization runoff using XP-SWMM. The parameters are estimated by GA from sensitivity analysis which is performed to analyze the runoff parameters.

  • PDF