• Title/Summary/Keyword: Urban particulate matter

Search Result 143, Processing Time 0.023 seconds

Measuring Changes in Fine Particulate Matter in Green Transportation Areas Due to Vehicle Operation Restrictions (차량 등급 운행 제한에 따른 녹색교통지역의 초미세먼지 변화 측정)

  • Joong-An Kim;Jong-Pil Yu;Young-Eun Jo
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.127-140
    • /
    • 2024
  • This study investigated the impact of vehicle grade operation restrictions in green transportation areas on the concentration of fine particulate matter (PM2.5) year by year. The results indicate that these restrictions positively affected the reduction of PM2.5 levels. The green transportation area policy reduced vehicle emissions and encouraged the use of public and eco-friendly transportation, thereby improving air quality. A notable outcome was the decrease in PM2.5 concentrations, which is expected to positively impact the health of residents in urban areas. The study considered various factors and variables related to the effectiveness of the vehicle grade operation restrictions policy. It was determined that there is a need to discuss the implementation methods of the policy, regional characteristics, and other environmental factors. These findings provide important implications for managing fine particulate matter and urban planning, suggesting that reference materials and ongoing research will be necessary considering future urban sustainability.

A Study on Green Space Location Selection to Reduce Particulate Matter by Projecting Distributions of Emission Source and Vulnerable Groups - focusing on Seongdong-gu, Seoul - (미세먼지 배출원과 취약계층 분포 추정을 통한 미세먼지 저감 녹지 입지 선정 연구 - 서울시 성동구를 대상으로 -)

  • Shin, Ye-Eun;Park, Jin-Sil;Kim, Su-Yeon;Lee, Sang-Woo;An, Kyung-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.53-68
    • /
    • 2021
  • The study aims to propose a locating method of green space for reducing Particulate Matter (PM) in ambient air in conjunction with its source traces and vulnerable groups. In order to carry out the aims and purposes, a literature review was conducted to derive indicators of vulnerable area to PM. Based on the developed indicators, the vulnerable areas and green spaces creation strategies for each cluster were developed for the case of Seongdong-gu, Seoul. As a result, six indicators for vulnerability analysis were came out including the vulnerable groups (children's facilities, old people's facilities), emission sources (air pollutant emission workplaces, roads), and environmental indicators (particulate matter concentration, NDVI). According to the six selected indicators, the target area was divided into 39 hexagons and analyzed to result the most vulnerable areas to particulate matter. As a result of comprehensive vulnerability analysis, the Seongsu-dong area was found to be the most vulnerable to particulate matter, and 5 clusters were derived through k-means cluster analysis. Cluster 1 was analyzed as areas that most vulnerable to particulate matter as a result of the comprehensive analysis, therefore urgent need to create green spaces to reduce particulate matter. Cluster 2 was areas that mostly belonged to the Han River. Cluster 3 corresponds to the largest number of hexagons, and since many vulnerable groups are distributed, it was analyzed as a cluster that required the creation of a green spaces to reduce particulate matter, focusing on facilities for vulnerable groups. Three hexagons are included in cluster 4, and the cluster has many roads and lacks vegetation in common. Cluster 5 has a lot of green spaces and is generally distributed with fewer vulnerable groups and emission sources; however, it has a high level of particulate matter concentration. In a situation where various green spaces creation projects for reducing particulate are being implemented, it is necessary to consider the vulnerable groups and emission sources and to present green space creation strategies for each space characteristic in order to increase the effectiveness of such projects. Therefore, this study is regarded as meaningful in suggesting a method for selecting a green area for reducing PM.

Analysis of Importance in Available Space for Creating Urban Forests to Reduce Particulate Matter - Using the Analytic Hierarchy Process - (미세먼지 저감 도시숲 조성을 위한 가용공간의 중요도 분석 - AHP 기법을 이용하여 -)

  • Jeong, Dae-Young;Choi, Yun-Eui;Chon, Jin-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.6
    • /
    • pp.103-114
    • /
    • 2019
  • Despite recent projects to create urban forests to reduce the levels of particulate matter, objective evaluation criteria for selecting suitable sites for the projects have not been provided. The purposes of this study are to identify assessment items for the evaluation of available spaces for urban forests for the reduction of particulate matter and to analyze the relative importance of the items using the Analytic Hierarchy Process (AHP). We identified a total of 19 items in five categories through a literature review and a panel discussion. A total of 29 responses were collected from surveys given to experts, and an AHP analysis was conducted on the results. As a result, 'locational characteristics' (0.355) received the highest weighted value among the five categories, followed by 'planting type of existing green space' (0.184), 'weather conditions' (0.183), 'physical characteristics' (0.15), and 'human social environment' (0.128). In addition, among all the assessment items, 'proximity of source apportionment of particulate matter' (0.143) had higher weighted value while 'plantation of existing green space' (0.024) had the lowest weighted value. This study will present objective criteria and directions in the selecting of available spaces to create urban forests for the reduction of particulate matter.

Comparative Analysis of Elemental Components in Airborne Particulate Matter by k0-NAA Methods (대기분진의 원소분석에 대한 k0-NAA법의 비교)

  • Chung, Yong-Sam;Moon, Jong-Hwa;Cho, Hyun-Je;Kim, Young-Jin
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.51-58
    • /
    • 2005
  • A comparison of the analytical data obtained by three $k_0$-NAA software programs was carried out using both the airborne particulate matter collected from an urban site and the certified reference materials of the air filter and urban dust to evaluate the performance of the analysis. The individual $k_0$-NAA standardization methods of three countries, Korea, China and Vietnam which had been modified from the well established $k_0$-program were used for the comparative analysis. The measured concentrations of 30 elements from the two kinds of air samples based on this software were in agreement with each other within about 20% analytical error except for a few elements. By contrast, the results of China and Vietnam were moderately higher than that of Korea due to a systematic error associated with the detection efficiency, gamma peak analysis and geometric effect.

CFD Analysis of the Inertial Impaction Pre-Filter for a Particulate Matter Collecting Device (미세먼지 포집장치 개발을 위한 관성충돌 프리필터 유동 전산해석)

  • Kyung, Dae Seung;Hwang, Dae Sung
    • Land and Housing Review
    • /
    • v.10 no.2
    • /
    • pp.53-58
    • /
    • 2019
  • Particulate matter (PM) is designated as a group 1 carcinogen by the International Agency for Research on Cancer (IARC) of the World Health Organization (WHO). In South Korea, the health threat caused by PM is the most serious level internationally. Therefore, in order to solve the urban PM problem, it is important to develop the technology that can control PM efficiently. In this study, CFD(Computational Fluid Dynamics) simulation was performed for PM pre-filter (type 1-3 with different PM collecting room) to develop a high-efficiency PM collecting device. The complex flow field and the local flow phenomenon inside the PM collecting device were understood with CFD simulation by changing the shape and size of the pre-filter. The PM removal performance can be described with flow rate through the device and PM removal efficiency. The type-1 pre-filter with 5x5 size collecting room was confirmed to have the highest efficiency. Based on the analysis results, the optimal type of pre-filter could be developed and it would be applied as an element technology included in the PM collecting device.

Selection of Particulate Matter Observation Measurement Sites in Urban Forest Using Wind Analysis (바람장 분석을 통한 도시숲 미세먼지 관측 장비 설치 지점 선정)

  • Lee, Ahreum;Jeong, Su-Jong;Park, Chan-Ryul;Park, Hoonyoung;Yoon, Jongmin;Son, Junghoon;Bae, Yeon
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.689-698
    • /
    • 2019
  • Air pollution in urban areas has become a serious problem in the recent years. Especially, high concentrations of particulate matter (PM) cause negative effects on human health. Several studies suggest urban forest as a tool for improving air quality because of the capability of forests in reducing PM concentrations through deposition and adsorption using leaf area. For this reason, the National Institute of Forest Science plans to install in-situ observation stations for PM and biogenic volatile organic compounds (BVOCs) on a national scale to verify the net effect of forests on urban air pollution. To measure the quantitative change of PM concentrations due to the urban forest, stations should be located within and outside the forest area with respect to atmospheric circulation. In this study, we analyze the wind direction at the potential measurement sites to assess suitable locations for detecting the effect of urban forests on air quality in five cities (i.e. Gwangju, Daegu, Busan, Incheon, and Ilsan). This technical note suggests effective locations of in-situ measurements by considering main wind direction in the five cities of this study. A measurement station network created in the future based on the selected locations will allow quantitative measurements of PM concentration and BVOCs emitted from the urban forest and help provide a comprehensive understanding of the forest capabilities of reducing air pollution.

Evaluation of Particulate Matter Removal Rate according to Filter Type and Thickness of Total Heat Exchanger in Apartment Houses (공동주택 전열교환기 필터종류 및 두께에 따른 미세먼지 제거율 평가)

  • Song, Yong-Woo
    • Land and Housing Review
    • /
    • v.11 no.4
    • /
    • pp.93-98
    • /
    • 2020
  • This study examined the particulate removal performance of three different types of air filters inside a heat exchanger. Of interest was the ability of each filter type in reducing the transmission of outdoor particulate matter of PM10 from entering an apartment while the heat exchanger was in operation. The study tested one commonly used medium filter (E11 grade) and two HEPA filters (H13 grade) of different thicknesses. Two different concentrations of particulate matter were used in the experiment to address different ambient air quality conditions in Korea, 32.75 ㎍/㎥ and 67.26 ㎍/㎥. Study results indicated that under the particulate matter concentration of 32.75 ㎍/㎥, all three filters were capable of removing more than 95% of the fine dust. However at a particulate matter concentration of 67.26 ㎍/㎥, the medium E11 grade filter was only able to remove about 90% of the particulates whereas the HEPA H13 grade filters were able to remove 95% or more of the particulates. The thicker HEPA filter (40T) was also more effective in removing particulates than the thinner HEPA filter (20T) by about 1.6 to 3 percentage points. Based on the findings of this study, it is recommended that HEPA filters of 20T thickness or greater be used during the high air pollution seasons of winter and spring in Korea while medium filters can be used during the other seasons to reduce outdoor air pollution transmission indoors.

An Analysis of the Rail Wear Measurements for the Prediction of Particulate Matter Emission in Urban Railway (도시철도 미세먼지 발생량 예측을 위한 레일 마모량 분석)

  • Yoon, Cheonjoo;Ko, Huigyu;Bang, Myeongseok;Kwon, Hyeokbin
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.339-350
    • /
    • 2018
  • The rail wear measurements in urban underground railway have been analyzed to predict the particulate matter emission caused by rail wear which is one of the major sources of particulate matter emission for underground railway systems. From the rail profile variations measured in the interval of one and half year by dedicated rail wear measuring instrument over the commercial urban underground railway line, 'line-s' which is about 45km long, the characteristics as well as the amount of rail wear have been analyzed after dividing the whole line into about 170 section with radius of curve(R). It has been concluded that the vertical wear parameter V0 and corner wear parameter C0 have been selected to represent the wear amount of straight and curved rail respectively. The amount of rail wear as well as the particulate matter emission by rail wear over the whole line normalized by the rail length as well as the number of train has also been deduced from the relationship between the rail wear parameters and the amount of rail cross-section area.

Performance Evaluation of Window Ventilation System for Reducing Indoor particulate matter (실내 미세먼지 저감을 위한 창호형 환기시스템 성능평가)

  • Yang, Young Kwon;Park, Jin Chul
    • Land and Housing Review
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Indoor particulate matter(PM) is a carcinogen and needs to be removed and managed. It is generally reduced and removed through ventilation and filtration. Owing to the recent occurrence of high-concentration fine dust and yellow dust in the atmosphere, however, it is difficult to expect the purification of indoor air through the simple introduction of the outside air. For residential buildings, in particular, they are highly dependent on natural ventilation but the lack of natural ventilation is worsening because concerns over the inflow of external pollutants are increasing. Therefore, this study designed and manufactured a window ventilation system that does not require a duct to improve the maintenance and management problems of general ventilation system, and constructed indoor PM concentration change data through performance evaluation.

Size distributions of atmospheric particulate matter and associated trace metals in the multi-industrial city of Ulsan, Korea

  • Kwon, Hye-Ok;Park, Min-Kyu;Kim, Seong-Joon;Choi, Jinsoo;Oh, Jun;Ahn, Joon-Young;Choi, Sung-Deuk
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.331-338
    • /
    • 2019
  • Particulate matter (PM) was collected using micro-orifice uniform deposit impactors from a residential (RES) site and an industrial (IND) site in Ulsan, South Korea, in September-October 2014. The PM samples were measured based on their size distributions (11 stages), ranging from $0.06{\mu}m$ to over $18.0{\mu}m$. Nine trace metals (As, Se, Cr, V, Cd, Pb, Ba, Sb, and Zn) associated with PM were analyzed. The PM samples exhibited weak bimodal distributions irrespective of sampling sites and events, and the mean concentrations of total PM (TPM) measured at the IND site ($56.7{\mu}g/m^3$) was higher than that measured at the RES site ($38.2{\mu}g/m^3$). The IND site also showed higher levels of nine trace metals, reflecting the influence of industrial activities and traffic emissions. At both sites, four trace metals (Ba, Zn, V, and Cr) contributed to over 80% of the total concentrations in TPM. The modality of individual trace metals was not strong except for Zn; however, the nine trace metals in $PM_{2.5}$ and $PM_{10}$ accounted for approximately 50% and 90% of the total concentrations in TPM, respectively. This result indicates that the size distributions of PM and trace metals are important to understand how respirable PM affects public health.