• 제목/요약/키워드: Urban heat-island phenomena

검색결과 29건 처리시간 0.023초

Analysis of the Correlation between Urban High Temperature Phenomenon and Air Pollution during Summer in Daegu

  • An, Eun-Ji;Kim, Hae-Dong
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.831-840
    • /
    • 2019
  • Recently, summer high temperature events caused by climate change and urban heat island phenomenon have become a serious social problem around the world. Urban areas have low albedo and huge heat storage, resulting in higher temperatures and longer lasting characteristics. To effectively consider the urban heat island measures, it is important to quantitatively grasp the impact of urban high temperatures on the society. Until now, the study of urban heat island phenomenon had been carried out focusing only on the effects of urban high temperature on human health (such as heat stroke and sleep disturbance). In this study, we focus on the effect of urban heat island phenomenon on air pollution. In particular, the relationship between high temperature phenomena in urban areas during summer and the concentration of photochemical oxidant is investigated. High concentrations of ozone during summer are confirmed to coincide with a day when the causative substances (NO2,VOCs) are high in urban areas during the early morning hours. Further, it is noted that the night urban heat island intensity is large.. Finally, although the concentration of other air pollutants has been decreasing in the long term, the concentration of photochemical oxidant gradually increases in Daegu.

관측과 기상모델을 이용한 춘천지역의 도시열섬현상 연구 (A Study of Urban Heat Island in Chuncheon Using WRF Model and Field Measurements)

  • 이종범;김재철;장윤정
    • 한국대기환경학회지
    • /
    • 제28권2호
    • /
    • pp.119-130
    • /
    • 2012
  • Heat island phenomena in Chuncheon (Korea) were investigated using air temperature measured by automatic weather stations and temperature dataloggers located at rural and urban sites. Numerical simulation of the phenomena was performed using Weather Research and Forecasting Urban Canopy Model (WRF-UCM) and results were compared with the observation. The model was initialized with NCEP/FNL data. The horizontal resolution of the fine domain is 0.33 km. The results of observational analyses show that the intensity of heat island was significantly higher during the nighttime than during the daytime. The highest measured temperature difference between rural and urban site is $3.49^{\circ}C$ and average temperature difference varies between 1.4 and $1.9^{\circ}C$. Good agreement was found between the simulated and observed temperatures. However, significantly overestimated wind speed was found at the urban sites. The linear regression analysis between observed and simulated temperature shows high correlation coefficient 0.96 for urban and 0.94 for rural sites while for wind speed, a very low correlation coefficient was found, 0.30 and 0.55 respectively.

폭염 및 도시열섬현상에 따른 노후 주거지의 적응 계획기법에 관한 연구 - 광진구 군자동 중심으로 - (The Research of Planning Method of Adaption for Old Residential Neighborhoods According to Heat wave and Urban Heat-island Phenomena - Focused on Gun-Ja Dong, Gwang-Jin Gu -)

  • 김민영;문은설
    • KIEAE Journal
    • /
    • 제16권4호
    • /
    • pp.31-39
    • /
    • 2016
  • Purpose: Urban heat island and Heat wave raise urban temperature and create damage of human life. Growing up as quantitative supply to solve shortage of housing, Urban residential area in Korea have a low rate of nature surface and heavily population makes temperature rise. Most houses in the declined residential area are multi-family rental housing and have many factors congesting housing environment such as narrow in-between space, outdoor staircases, walls and semi-basement floor, which make thermal environment getting worse. Most of the residents in this area are small tenants vulnerable to climate change adaptation, This damage is expected to be even greater. This study focus on multiple dwelling in urban residential area prone to temperature rise and draw temperature adaption method that can apply to multiple dwelling.

도시열섬 현상에 의한 기온차이가 흰줄숲모기(Aedes albopictus) 부화율에 미치는 영향 (The Impact of Urban Heat Island-induced Temperature Differences on the Hatching Rates of Aedes albopictus)

  • 류지훈;최광식
    • 한국응용곤충학회지
    • /
    • 제63권1호
    • /
    • pp.77-80
    • /
    • 2024
  • 한국에서 흰줄숲모기(Aedes albopictus)는 일반적으로 매우 흔한 종으로 여기지지만, 해외에서는 주요 질병 매개체로 인식되고 있으며, 도시 환경에 잘 적응하는 특징을 가지고 있다. 최근 도심 지역의 기후변화와 열섬 현상에 따른 곤충의 대발생이 보고되면서, 이러한 환경 변화가 모기의 부화율에 미치는 영향에 대한 연구의 필요성이 증가하고 있다. 본 연구를 위해 서울시 내 25개의 기상청 자동관측장비(AWS)에서 수집된 기후 데이터를 분석하여, 열섬 현상이 강한 도심 지역과 열섬 현상이 약한 교외 지역을 선정하였으며, 이를 통해 임의의 사이구간을 생성하여 총 9개의 열섬 조건에서 흰줄숲모기의 부화율을 분석하였다. 분석 결과, 열섬 현상이 강할수록 부화율이 증가하였으며, 회귀분석을 통해 열섬 강도가 높아질수록 이러한 추세가 더욱 빨라질 수 있음을 확인하였다. 이러한 연구 결과는 도시열섬 현상에 따른 기온 변화가 흰줄숲모기의 부화율에 중요한 영향을 미칠 수 있음을 시사한다.

춘천지역 도시열섬의 특성과 대기질에 미치는 영향 (Aspects of Urban Heat Island and Its's Effect on Air Pollution Concentration in Chunchon Area)

  • 이종범;김용국;김태우
    • 한국대기환경학회지
    • /
    • 제9권4호
    • /
    • pp.303-309
    • /
    • 1993
  • An observational study of urban heat island was carried out using field data obatined during 6 days in May and August 1992 in Chunchon(population size 180.000). Air temperature was measured at 64 points along two sampling ruoutes by themisters attached to cars. Both routes cover urban and rural area and across the cneter of urban area. Continuous observation of air sonde was perfomed to clarify heights of nocturnal boundary layer(NBL) at the center of urban area. Surface meteorological observations were performed at both urban and rural sites. This study showed that heat island phenomena was obviously observed at the urbanized area during the night time with low wind speed. The average NBL heights exteded to about 10 meters, but varied with meteorological conditions. After sunset, the air temperature decreased with time at both sites and cooling rate at the urban site was greater than the rural site. The maximum heat island intensity was 7.5$^{\circ}$C at 21 LST, May 4. Usingthe two meteorological data sets obtained from urban and rural sites, the air pollutant concentration was calculated by Gaussian plume model which can obtain not only horizontal distribution of concentration but also vertical distribution. The result indicated that the concentration resulted from urban meteorological data set was lower than that from rural meteorological data set. It was also calculated that the air pollutant extended to higher level in urban meteorological data set than that in rural meteorological data set.

  • PDF

인공위성영상과 딥러닝을 이용한 건설공사현장 폭염취약지역 분석 (Heatwave Vulnerability Analysis of Construction Sites Using Satellite Imagery Data and Deep Learning)

  • 김슬기;박승희
    • 대한토목학회논문집
    • /
    • 제42권2호
    • /
    • pp.263-272
    • /
    • 2022
  • 폭염과 도시열섬현상은 기후변화가 진행됨에 따라 피해가 더욱 커지고 있으며, 2050년까지 폭염 발생빈도는 2~6배가 증가될 것으로 예측된다. 특히, 폭염기간동안 건설공사현장에서의 근로자가 느끼는 더위체감지수는 매우 높으며, 도시열섬현상까지 고려하게 되면 체감지수는 더욱 높아진다. 열에 취약한 건설현장 환경과 건설근로자의 상황은 나아지지 않고 있으며, 피해를 줄이기 위해서는 효과적인 대응이 필요한 시점이다. 본 연구에서는 인공위성영상 이미지와 Land Surface Temperature (LST)와 Long Short Term Memory (LSTM) 딥러닝 모델 기법을 적용하여 33℃ 이상 온도가 되는 지역을 분석하고, 폭염에 취약한 건설공사현장을 식별하여 폭염 및 도시열섬현상의 복합적인 피해를 가중시킬 수 있는 가장 취약한 지역을 예측하여 도출하였다. 예측 결과를 통해 건설근로자의 안전을 보장하고, 건설현장 경보시스템의 기반이 될 수 있기를 기대한다.

신도시 개발에 따른 표면 열섬현상 변화분석 및 도시 형태와의 상관관계 (Analysis of the Surface Urban Heat Island Changes according to NewTowns Development and Correlation with Urban Morphology)

  • 이경일
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.921-932
    • /
    • 2023
  • 도시 인구집중 및 도시확장에 의한 토지피복 변화는 도시 내 열섬현상과 같은 다양한 환경문제를 유발할 수 있다. 특히 계획적으로 구축되는 신도시의 경우 짧은 기간에 진행되는 급격한 도시화로 인한 도시 기후의 변화를 분석하기에 적절한 연구대상지로 여겨진다. 본 연구에서는 Landsat 위성영상을 활용하여 분당 및 판교 신도시를 대상으로 개발 전후 토지피복 변화와 이에 따른 표면 도시열섬(surface urban heat island, SUHI) 현상의 변화를 비교, 분석하였다. 또한 SUHI 강도에 영향을 끼칠 수 있는 도시구조적 특징들 간 상관분석을 수행하였다. 분석 결과, 신도시 개발이 진행됨에 따른 토지피복의 급격한 변화 및 이에 따른 SUHI 현상의 직접적인 심화를 확인하였다. 본 연구를 통해 각기 다른 도시계획에 의한 SUHI 현상의 차이를 확인하고 열 환경 개선을 위한 입체적인 도시계획의 필요성이 제시될 수 있다.

도시기후 평가와 방재를 위한 도시기상 수치모의 (Numerical Simulation for Urban Climate Assessment and Hazard)

  • 오성남
    • 한국방재학회지
    • /
    • 제2권4호
    • /
    • pp.40-47
    • /
    • 2002
  • Since it is important to understand the bio-climatic change in Seoul for ecological city planning in the future, this paper gives an overview on bio-climate analysis of urban environments at Seoul. We analyzed its characteristics in recent years using the observations of 24 of Automatic Weather Station (AWS) by Korea Meteorological Administration (KMA). In urbanization, Seoul metropolitan area is densely populated and is concentrated with high buildings. This urban activity changes land covering, which modifies the local circulation of radiation, heat and moisture, precipitation and creating a specific climate. Urban climate is evidently manifested in the phenomena of the increase of the air temperature, called urban heat Island and in addition urban sqall line of heavy rain. Since a city has its different land cover and street structure, these form their own climate character such as climate comfort zone. The thermal fold in urban area such as the heat island is produced by the change of land use and the air pollution that provide the bio-climate change of urban eco-system. The urban wind flow is the most important climate element on dispersion of air pollution, thermal effects and heavy shower. Numerical modeling indicates that the bio-climatic transition of wind wake in urban area and the dispersion of the air pollution by the simulations of the wind variation depend on the urban land cover change. The winds are separately simulated on small and micro-scale at Seoul with two kinds of kinetic model, Witrak and MUKLIMO.

  • PDF

EVALUATION OF SURFACE HEAT FLUXES FOR DIFFERENT LAND COVER IN HEAT ISLAND EFFECT

  • Chang, Tzu-Yin;Liao, Lu-Wei;Liou, Yuei-An
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.68-71
    • /
    • 2008
  • Our goal is to obtain a better scientific understanding how to define the nature and role of remotely sensed land surface parameters and energy fluxes in the heat island phenomena, and local and regional weather and climate. By using the MODIS visible and thermal imagery data and analyzing the surface energy flux images associated with the change of the landcover and landuse in study area, we will estimate and present how significant is the magnitude of the heat island heat effect and its relation with the surface parameters and the energy fluxes in Taiwan. To achieve our objective, we used the energy budget components such as net radiation, soil heat flux, sensible heat flux, and latent heat flux in the study area of interest derived form remotely sensed data to understand the island heat effect. The result shows that the water is the most important component to decrease the temperature, and the more the consumed net radiation to latent heat, the lower urban surface temperature.

  • PDF

도시녹지 내 주요 식물상의 개엽시기 및 잎의 성장 특성 비교 (Comparing a Perspective on the Leaf Burst Timing and Leaf Growth Performance of Major Plants observed in Urban Forests)

  • 장갑수
    • 한국환경복원기술학회지
    • /
    • 제15권2호
    • /
    • pp.127-136
    • /
    • 2012
  • Global climate change and urban heat island have been the main factors which changed leaf burst timing and leaf growth performance in urban forests. Therefore, the ecosystem in urban forests were modified and the types and composition of wildlives, living in the urban forests, were desperately changed due to the urban heat island. This study was done to identify phenological phenomena appeared in urban forests due to the urban climate change by comparing the morphological changes of leaves due to the change of temperature in Spring. The study focused on nine urban forests distributed in Daegu city, where weekly temperature and the morphological changes of the plants were mainly observed. Urban forests had different temperature depending on where each was located in the urban area. The difference of temperature in forests in and outside the urban area was verified by SPSS (Statistical Package for the Social Sciences), which divided the urban forests into about three groups; the one located outside the city, another group located in the middle of the city, and the other located close to the outside forests. The forests located in the middle of the city were showing the earlier leaf burst timing and leaf growth performance, while forests, distributed outside the city, were showing relatively late leaf burst timing and leaf performance.