• Title/Summary/Keyword: Urban expansion intensity index

Search Result 7, Processing Time 0.022 seconds

Spatial Relations of the Urban Expansion Intensity and Flooded Buildings (도시확장강도와 건물침수의 공간적 관계성)

  • Kang, Sang Jun;Kwon, Tae Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.759-764
    • /
    • 2017
  • The paper is intended to explore the spatial relations between flooded buildings and urban expansion phenomena by employing urban expansion intensity index and hotspot analysis methods for the case of Gangneung. Two major results are as followed; first, flooding susceptible areas are found in the regions where the highly intense development occurs within a short period of time, so called pseudo-urbanization. Second, less flooded buildings exist in old towns where it is believed that there is the lack of urban infrastructure services. This study indicates the possibility that the highly intense development and pseudo-urbanization with a relatively short time period relate to flooded building events. In addition, the possibility leads to another issue that new developments might be increasing the flooding vulnerability worse than before, particularly, to the adjacent old towns. For the better understanding, it is desirable to have further related case studies in the near future.

Flooding Risk under Climate Change of Fast Growing Cities in Vietnam (베트남 급성장 도시지역의 기후변화 홍수재해 위험성 분석)

  • Kim, So Yoon;Lee, Byoung Jae;Lee, Jongso
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Vietnamese cities have a high risk of flooding under climate change due to their geographical characteristics. In this situation, the urban area is expanding with rapid growth of urban population. However, the risk of flooding is increasing due to the increase in impermeable areas and insufficient infrastructure. This study analyzed the urban expansion trend at the national level in Vietnam for the past 10 years (2007-2017) by using the Urban Expansion Intensity Index. Also, this study selected Hue City as a region with a large impact of climate change and a rapid expansion and found the possibility of flooding in the urban expansion area. The result showed that cities have been expanded around major cities in the Red River Delta, Mekong Delta, and coastal areas. In the case of Hue City, the area with fast expansion rate has a higher expected flood area. It implies that the risk of flood disasters may increase if the urabn expansion is carried out without disaster prevention measures. It is expected that Korean urban disaster prevention policies such as urban climate change disaster vulnerability analysis system will be helpful in establishing urban plans considering climate change in the fast growing regions such as Vietnam.

Mapping and Analyzing the Park Cooling Intensity in Mitigation of Urban Heat Island Effect in Lahore, Pakistan

  • Hanif, Aysha;Nasar-u-Minallah, Muhammad;Zia, Sahar;Ashraf, Iqra
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.127-137
    • /
    • 2022
  • Urban Heat Island (UHI) effect has been widely studied as a global concern of the 21st century. Heat generation from urban built-up structures and anthropogenic heat sources are the main factors to create UHIs. Unfortunately, both factors are expanding rapidly in Lahore and accelerating UHI effects. The effects of UHI are expanding with the expansion of impermeable surfaces towards urban green areas. Therefore, this study was arranged to analyze the role of urban cooling intensity in reducing urban heat island effects. For this purpose, 15 parks were selected to analyze their effects on the land surface temperature (LST) of Lahore. The study obtained two images of Landsat-8 based on seasons: the first of June-2018 for summer and the second of November-2018 for winter. The LST of the study area was calculated using the radiative transfer equation (RTE) method. The results show that the theme parks have the largest cooling effect while the linear parks have the lowest. The mean park LST and PCI of the samples are also positively correlated with the fractional vegetation cover (FVC) and normalized difference water index (NDWI). So, it is concluded that urban parks play a positive role in reducing and mitigating LST and UHI effects. Therefore, it is suggested that the increase of vegetation cover should be used to develop impervious surfaces and sustainable landscape planning.

Establishment of Resilient Infrastructures for the Mitigation of an Urban Water Problem: 1. Robustness Assessment of Structural Alternatives for the Problem of Urban Floods (도시 물 문제 저감을 위한 회복탄력적 사회기반시설 구축: 1. 도시 홍수 문제 구조적 대안의 내구성 평가)

  • Lee, Changmin;Jung, Jihyeun;An, Jinsung;Kim, Jae Young;Choi, Yongju
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.117-125
    • /
    • 2016
  • Current cities encounter various types of water problems due to rapid urbanization and climate change. The increasing significance of urban water problems calls for the establishment of resilient alternatives to prevent and minimize social loss that results from these phenomena. As a background research for establishing resilient infrastructures for the mitigation of urban water problems, we evaluated the robustness of structural alternatives for urban flood as a representative case. Combining the robustness index (RI) and the cost index (CI), we suggested the robustness-cost index (RCI) as an indicator of the robustness of structural alternatives, and applied the index to assess the existing infrastructures and structural alternatives (i.e., sewer network expansion, additional storage tank construction, and green roof construction) at a site prone to floods located around Gangnam-station, Seoul, Korea. At a rainfall intensity frequency range of 2 to 20 years, the usage of a storage tank and a green roof showed relatively high RCI value, with a variation of an alternative showing greater RCI between the two depending on the size of design rainfall. For a rainfall intensity frequency of 30 years, installing a storage tank with some green roofing was the most resilient alternative based on the RCI value. We proposed strategies for establishing resilient infrastructures for the mitigation of urban floods by evaluating the robustness of existing infrastructures and selecting optimal structural alternatives with the consideration of scales of design disaster.

Revisiting Suburban Developments: Urban Evolution and Its Implication to Planning (교외개발의 재조명: 도시의 진화와 계획으로의 함의)

  • Kang, Sangjun
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.3
    • /
    • pp.161-172
    • /
    • 2022
  • This study attempts to understand urban evolution characteristics through suburban development cases considered as a contemporary urban issue. Methods are (1) Urban Expansion Intensity Index (UEII) for the 9 cities in the Korea (1980-2010) & 49 cities in the US, (2) Morphological Spatial Pattern Analysis(MSPA) and Entropy for the developed areas in the Chicago Metro (2019). Results are (1) a suburban development could be understood the universal characteristics, (2) the characteristics of the whole region might be appeared to be in a different direction from the characteristics of its sub-cities. Implications are (1) Suburban expansion can be understood as a functionally well served urban change phenomenon and it is important to focus on the functions of sub-level cities, (2) the urban evolutionary perspective makes a difference from the developmental growth perspective. The extensive empirical studies will be beneficial for better understating of urban evolution.

Analysis of the Surface Urban Heat Island Changes according to Urbanization in Sejong City Using Landsat Imagery (Landsat영상을 이용한 토지피복 변화에 따른 행정중심복합도시의 표면 열섬현상 변화분석)

  • Lee, Kyungil;Lim, Chul-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.225-236
    • /
    • 2022
  • Urbanization due to population growth and regional development can cause various environmental problems, such as the urban heat island phenomenon. A planned city is considered an appropriate study site to analyze changes in urban climate caused by rapid urbanization in a short-term period. In this study, changes in land cover and surface heat island phenomenon were analyzed according to the development plan in Sejong City from 2013 to 2020 using Landsat-8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite imagery. The surface temperature was calculated in consideration of the thermal infrared band value provided by the satellite image and the emissivity, and based on this the surface heat island effect intensity and Urban Thermal Field Variance Index (UTFVI) change analysis were performed. The level-2 land cover map provided by the Ministry of Environment was used to confirm the change in land cover as the development progressed and the difference in the surface heat island intensity by each land cover. As a result of the analysis, it was confirmed that the urbanized area increased by 15% and the vegetation decreased by more than 28%. Expansion and intensification of the heat island phenomenon due to urban development were observed, and it was confirmed that the ecological level of the area where the heat island phenomenon occurred was very low. Therefore, It can suggest the need for a policy to improve the residential environment according to the quantitative change of the thermal environment due to rapid urbanization.

Analysis of Changes in Forest According to Urban Expansion Pattern and Morphological Features - Focused on Seoul and Daegu - (도시의 공간 확장 및 형태적 특징에 따른 산림녹지의 변화 분석 - 서울, 대구를 중심으로 -)

  • Ryu, Jieun;Hwang, Jinhoo;Lee, Junhee;Chung, Hye-In;Lee, Kyung-il;Choi, Yu-Young;Zhu, Yongyan;Sung, Min-Jun;Jang, Raeik;Sung, Hyun-Chan;Jeon, Seongwoo;Kang, Jin-Yung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.835-854
    • /
    • 2017
  • Government regulations and policies are important means of restraining the indiscreet expansion of urban areas. According to the standards from those means, it is clear that the fluctuation of forest green proportion encroached by the increase of urban space is obvious. In this study, we interpreted the changes of urban areas as well as the green ones owing to the urban expansion by the decades from 1996, with focusing on the cities of Seoul and Daegu highly developed in South Korea. The purpose of this study is to analyze the spatial expansion and morphological characteristics of urban land cover using not only satellite imageries (1996, 2006, 2016). but also the urban expansion intensity index (UEII) and GUIDOS program. Ultimately, this study is to compare the changes in the rate of forests due to urban expansions annually analyzed based on areas of forest elevation, slope, and the area of single forest patch. In Seoul, the expansion begun from urban space to suburban areas was comparatively rapid, which led the forest fragmentation and the gradual decline of the single patch. However, when it comes to DEM (Digital elevation model) and slope above a certain standard, by the development regulations, there was little decrease in area by anthropogenic developments. The city of Daegu has increased at a slow speed since 1996 in urban and suburban areas, whereas green forests have greatly increased through green forest conservation campaigns. In this way, as to the government policies and regulations, the quantitative and morphological expansion of cities owing to development could be controlled and forest spaces could be preserved as well. Therefore, regulations and policies by the government should be appropriately utilized for sustainable cities.