• Title/Summary/Keyword: Urban ecosystem services

Search Result 64, Processing Time 0.021 seconds

Detection of Individual Trees in Human Settlement Using Airborne LiDAR Data and Deep Learning-Based Urban Green Space Map (항공 라이다와 딥러닝 기반 도시 수목 면적 지도를 이용한 개별 도시 수목 탐지)

  • Yeonsu Lee ;Bokyung Son ;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1145-1153
    • /
    • 2023
  • Urban trees play an important role in absorbing carbon dioxide from the atmosphere, improving air quality, mitigating the urban heat island effect, and providing ecosystem services. To effectively manage and conserve urban trees, accurate spatial information on their location, condition, species, and population is needed. In this study, we propose an algorithm that uses a high-resolution urban tree cover map constructed from deep learning approach to separate trees from the urban land surface and accurately detect tree locations through local maximum filtering. Instead of using a uniform filter size, we improved the tree detection performance by selecting the appropriate filter size according to the tree height in consideration of various urban growth environments. The research output, the location and height of individual trees in human settlement over Suwon, will serve as a basis for sustainable management of urban ecosystems and carbon reduction measures.

On the Needs of Vertical and Horizontal Transportation Machines for Freight Transportation Standard Containers to Derive Design Requirements Optimized for the Urban Railway Platform Environment

  • Lee, Sang Min;Park, Jae Min;Kim, Young Min;Kim, Joo Uk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.112-120
    • /
    • 2021
  • Recently, the number of consumers using digital online distribution platforms is increasing. This caused the rapid growth of the e-commerce market and increased delivery volume in urban areas. The logistics system, designed ar006Fund the city center to handle the delivery volume, operates a delivery system from the outskirts of the city to the urban area using cargo trucks. This maintains an ecosystem of high-cost and inefficient structures that increase social costs such as road traffic congestion and environmental problems. To solve this problem, research is being conducted worldwide to establish a high-efficiency urban joint logistics system using urban railway facilities and underground space infrastructure existing in existing cities. The joint logistics system begins with linking unmanned delivery automation services that link terminal delivery such as cargo classification and stacking, infrastructure construction that performs cargo transfer function by separating from passengers such as using cargo platform. To this end, it is necessary to apply the device to the vertical and horizontal transportation machine supporting the vertical transfer in the flat space of the joint logistics terminal, which is the base technology for transporting cargo using the transfer robot to the destination designated as a freight-only urban railway vehicle. Therefore, this paper aims to derive holistic viewpoints needs for design requirements for vertical and vertical transportation machines and freight transportation standard containers, which are underground railway logistics transport devices to be constructed by urban logistics ecosystem changes.

The classification of biotope type and characteristics of naturalized plant habitat on the coastal sand dune ecosystem

  • Lee, Jeom-Sook;Jeon, Ji-Young;Ihm, Byung-Sun;Myeong, Hyeon-Ho
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.167-175
    • /
    • 2012
  • Coastal sand dune systems are particularly fragile and threaten the environment. However, these systems provide fundamental ecosystem services to the nearby urban areas, acting, for example, as protective buffers against erosion. In this paper, we attempt to classify the biotope types of coastal sand dune ecosystems and select an index for the assessment of the conservation value. The types of biotopes are categorized based on the vegetation map; floras are examined in order to research the effects of hinterlands on coastal sand dunes. In addition, a naturalization rate and an urbanization index for each biotope type in hinterlands are analyzed. In the ecosystem of coastal sand dunes, the urbanization index and naturalization rate shows a higher value in sand dunes with areas of road, residential, and idle land in farm villages, rice fields, and fields. On the contrary, a lower value in the urbanization index and naturalization rate is present when typical biotope types, such as sand dune vegetation and natural Pinus thunbergii forests, are widely distributed. Based on these results, urbanization index and naturalization rate should be used as critical indices for the assessment of the ecosystem of costal sand dunes.

Accessibility Analysis in Mapping Cultural Ecosystem Service of Namyangju-si (접근성 개념을 적용한 문화서비스 평가 -남양주시를 대상으로-)

  • Jun, Baysok;Kang, Wanmo;Lee, Jaehyuck;Kim, Sunghoon;Kim, Byeori;Kim, Ilkwon;Lee, Jooeun;Kwon, Hyuksoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.367-377
    • /
    • 2018
  • A cultural ecosystem service(CES), which is non-material benefit that human gains from ecosystem, has been recently further recognized as gross national income increases. Previous researches proposed to quantify the value of CES, which still remains as a challenging issue today due to its social and cultural subjectivity. This study proposes new way of assessing CES which is called Cultural Service Opportunity Spectrum(CSOS). CSOS is accessibility based CES assessment methodology for regional scale and it is designed to be applicable for any regions in Korea for supporting decision making process. CSOS employed public spatial data which are road network and population density map. In addition, the results of 'Rapid Assessment of Natural Assets' implemented by National Institute of Ecology, Korea were used as a complementary data. CSOS was applied to Namyangju-si and the methodology resulted in revealing specific areas with great accessibility to 'Natural Assets' in the region. Based on the results, the advantages and limitations of the methodology were discussed with regard to weighting three main factors and in contrast to Scenic Quality model and Recreation model of InVEST which have been commonly used for assessing CES today due to its convenience today.

A Study on Categorizing Ecosystem Groups for Climate Change Risk Assessment - Focused on Applicability of Land Cover Classification - (기후변화 리스크 평가를 위한 생태계 유형분류 방안 검토 - 국내 토지피복분류 적용성을 중심으로 -)

  • Yeo, Inae;Bae, Haejin;Hong, Seungbum
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.385-403
    • /
    • 2017
  • This study showed the national ecosystem classification for the spatial standards of ecosystems-based approaches to the risk assessments and adaptation plan. The characteristics of climate change risk assessment, implement national adaptation plans, and ecosystem/habitat classification status was evaluated. Focusing on the land cover classification widely utilized as spatial data for the assessments of biodiversity and ecosystem services in the UK and other countries in Europe, the applicability of the national land cover classification for climate change risk assessments was reviewed. Considering the ecosystem classification for climate change risk assessment and establishing adaptation measures, it is difficult to apply rough classification method to the land cover system because of lack of information on habitat trend by categorization. The results indicated that forest ecosystems and agro-ecosystem occupied 62.3% and 25.0% of land cover, respectively, of the entire country. Although the area is small compared with the land area, wetland ecosystem (2.9%), marine ecosystem (0.4%), coastal ecosystem (0.6%), and urban ecosystem (6.1%) can be included in the risk assessments. Therefore, it is necessary to subdivide below the medium classification for the forest and agricultural land, as well as Inland wetland, which has a higher proportion of habitat preference of taxa than land area, marine/coastal habitat, and transition areas such as urban and natural ecosystem.

Estimation Carbon Storage of Urban Street trees Using UAV Imagery and SfM Technique (UAV 영상과 SfM 기술을 이용한 가로수의 탄소저장량 추정)

  • Kim, Da-Seul;Lee, Dong-Kun;Heo, Han-Kyul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.1-14
    • /
    • 2019
  • Carbon storage is one of the regulating ecosystem services provided by urban street trees. It is important that evaluating the economic value of ecosystem services accurately. The carbon storage of street trees was calculated by measuring the morphological parameter on the field. As the method is labor-intensive and time-consuming for the macro-scale research, remote sensing has been more widely used. The airborne Light Detection And Ranging (LiDAR) is used in obtaining the point clouds data of a densely planted area and extracting individual trees for the carbon storage estimation. However, the LiDAR has limitations such as high cost and complicated operations. In addition, trees change over time they need to be frequently. Therefore, Structure from Motion (SfM) photogrammetry with unmanned Aerial Vehicle (UAV) is a more suitable method for obtaining point clouds data. In this paper, a UAV loaded with a digital camera was employed to take oblique aerial images for generating point cloud of street trees. We extracted the diameter of breast height (DBH) from generated point cloud data to calculate the carbon storage. We compared DBH calculated from UAV data and measured data from the field in the selected area. The calculated DBH was used to estimate the carbon storage of street trees in the study area using a regression model. The results demonstrate the feasibility and effectiveness of applying UAV imagery and SfM technique to the carbon storage estimation of street trees. The technique can contribute to efficiently building inventories of the carbon storage of street trees in urban areas.

Establishing Habitat Quality Criteria for the Ecosystem Services InVEST Model Using AHP Techniques (AHP기법을 적용한 생태계서비스 InVEST 모형 서식지질 기준 설정)

  • Hae-Seon Shin;Jeong-Eun Jang;Sang-Cheol, Lee;Hye-Yeon Kwon;Gyeong-Rok Kim;Jin Jang;Song-Hyun Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.1
    • /
    • pp.67-78
    • /
    • 2024
  • The term ecosystem services refers to natural ecosystems' benefits to humans. Various models have been developed and applied to quantify ecosystem services. Habitat quality assessment is a widely used leading InVEST ecosystem service model. In Korea, habitat quality assessment is conducted for national parks. For habitat quality assessment, the initial value of habitat quality must be used to assess the sensitivity to threats, which varies depending on the country and application field. Therefore, an expert survey (AHP) was conducted based on previous habitat quality assessments in national parks to adjust the sensitivity, the initial value for the habit quality assessment. As a result of the AHP, 18 items were adjusted, including 10 items, such as natural grassland and unarranged fields, upward and 8 items, such as rivers and ponds, downward. Based on the adjusted sensitivity results, the habitat quality of Bukhansan National Park and Gyeryongsan National Park (urban type), Gyeongju National Park (historic type), Hallyeohaesang National Park (ocean type), and Jirisan National Park and Seoraksan National Park (mountain type) were adjusted. The results of the analysis showed that the habitat quality of urban dry areas and water bodies distributed in the national parks was reflected in the habitat quality assessment. In the future, it will be possible to evaluate the habitat quality of natural parks using this standard.

Green network analysis in coastal cities using least-cost path analysis: a study of Jakarta, Indonesia

  • Kim, Jae-Eun
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.141-147
    • /
    • 2012
  • The rapid urbanization in developing countries is accelerating both the depletion and fragmentation of urban green space, despite the known positive effects of green spaces on the environmental conditions in cities and the quality of life of residents. Consequently, there is a need for practical tools that can support the development of networks of urban green spaces. This article presents a study that used a GIS-based least cost path (LCP) analysis to identify the best alternative for developing an urban green space network in the coastal city of Jakarta, Indonesia, which was based on the evaluation of topography and land use characteristics. Pair-wise analysis was used to reduce the sensitivity in the LCP model. The results showed that the coastal wetlands in the northern part of Jakarta and the agricultural fields in the suburban areas of Jakarta play an important role in connecting the green space network. On the other hand, some green spaces in the central part of Jakarta could not be connected by the LCP model. The method used in this study can serve as a tool to support the identification of networks of potential urban green spaces. It can also provide useful information for sustainable urban landscape planning and management in urban ecosystems. However, the inclusion of socio-economic criteria would further improve the model.

Assessing conservation priorities of unexecuted urban parks in Seoul using ecological network and accessibility analyses (생태네트워크와 접근성 분석에 의한 서울시 미집행 도시공원의 보전 우선순위 평가)

  • Kang, Wan-Mo;Song, Young-Keun;Sung, Hyun-Chan;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.2
    • /
    • pp.53-64
    • /
    • 2018
  • This study aims to quantitatively evaluate the conservation priorities of unexecuted urban parks in Seoul both from an ecological and public perspective. To this end, two methodologies, ecological network analysis based on graph and circuit theory and accessibility analysis, were employed in order to assess ecological connectivity of and public accessibility to unexecuted parks, respectively. This study applied linkage-mapping methods (shortest path and current flow betweenness centrality) of connectivity analysis to an integrated map of landscape permeability. The population-weighted accessibility to unexecuted parks was measured based on a negative exponential distance decay function. As a result, for both ecological connectivity and accessibility, Gwanaksan, Suraksan, and Bulamsan urban natural parks are found to be the most important (rank 1-3) to be conserved. For these sites, inner park areas with conservation priorities for connectivity and accessibility were identified. The findings of the study can be used for giving conservation priority to the unexecuted urban parks in terms of long-term sustainable urban planning.

Mapping Vegetation Volume in Urban Environments by Fusing LiDAR and Multispectral Data

  • Jung, Jinha;Pijanowski, Bryan
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.661-670
    • /
    • 2012
  • Urban forests provide great ecosystem services to population in metropolitan areas even though they occupy little green space in a huge gray landscape. Unfortunately, urbanization inherently results in threatening the green infrastructure, and the recent urbanization trends drew great attention of scientists and policy makers on how to preserve or restore green infrastructure in metropolitan area. For this reason, mapping the spatial distribution of the green infrastructure is important in urban environments since the resulting map helps us identify hot green spots and set up long term plan on how to preserve or restore green infrastructure in urban environments. As a preliminary step for mapping green infrastructure utilizing multi-source remote sensing data in urban environments, the objective of this study is to map vegetation volume by fusing LiDAR and multispectral data in urban environments. Multispectral imageries are used to identify the two dimensional distribution of green infrastructure, while LiDAR data are utilized to characterize the vertical structure of the identified green structure. Vegetation volume was calculated over the metropolitan Chicago city area, and the vegetation volume was summarized over 16 NLCD classes. The experimental results indicated that vegetation volume varies greatly even in the same land cover class, and traditional land cover map based above ground biomass estimation approach may introduce bias in the estimation results.