• Title/Summary/Keyword: Urban drainage

Search Result 362, Processing Time 0.026 seconds

Analysis of Rainfall Runoff Reduction Effect Depending upon the Location of Detention Pond in Urban Area (도시유역 저류지 위치에 따른 우수유출저감효과 분석)

  • Lee, Jae Joon;Kim, Ho Nyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.535-546
    • /
    • 2008
  • Urbanization results in increased runoff volume and flowrate and shortening in time of concentration, which may cause frequent flooding downstream. The retardation structures are used to eliminate adverse downstream effects of urban stormwater runoff. There are various types of flow retardation measures include detention basin, retention basin, and infiltration basin. In this study, to present a rough standard about location of detention pond for attenuating peak flow of urban area, the runoff reduction effect is analyzed at outlet point when detention pond is located to upstream drainage than outlet. The runoff reduction effects are analyzed under the three assumed basins. These basins have longitudinal shape (SF = 0. 204), concentration shape (SF = 0. 782), and middle shape (SF = 0.567). Numerous variables in connection with the storage effect of detention pond and the runoff reduction effects are analyzed by changing the location of detention pond. To analyze runoff reduction effect by location of single detention pond, Dimensionless Upstream Area Ratio (DUAR) is changed to 20%, 40%, 60%, and 80% according to the basin shape. In case of multiple detention pond, DUAR is changed to 60%, 80%, 100%, 120%, and 140% only under the middle shape basin (SF = 0.567). Related figures and regression equations to determine the location of detention pond are obtained from above analysis of two cases in this study. These results can be used to determine the location of appropriate detention pond corresponding to the any runoff reduction such as storage ratio and peak flow ratio in urban watershed.

Mapping Inundation Areas by Flash Flood and Developing Rainfall Standards for Evacuation in Urban Settings (GIS를 이용한 도시지역 돌발홍수 침수예상지도 작성 및 대피강우기준 개발)

  • Shin, Sang-Young;Yeo, Chang-Geon;Baek, Chang-Hyun;Kim, Yoon-Jong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.71-80
    • /
    • 2005
  • As local flash flood exceeding planned capacity occurs frequently, localized preparedness and response to flood inundation are increasingly important. Using XP-SWMM model and GIS techniques, this study analyzes inundation areas by local flash flood and develops rainfall standards for evacuation with the case of Sadang-Cheon area, a local stream and its nearby highly populated watershed in the southern part of metropolitan Seoul, Flood inundation areas overflowed from drainage systems are analyzed and mapped by amount of rainfall that is derived from reference levels of stream flow. Rainfall standards for evacuation are comprised of 'watch' (40mm/hr) in preparing for near-future inundation and 'evacuation' (65mm/hr) in responding to realized inundation. The methods suggested by this case study may be applied to other urban areas for sound flood prevention policy measures and thus risk minimization.

  • PDF

Flood Inundation Analysis in Urban Area Using XP-SWMM (XP-SWMM 모형을 이용한 도심지역 침수해석)

  • Kim, Jinsu;Lee, Wonho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Current domestic research is to demonstrate the effectiveness and efficiencies of flood prevention measures through one-dimensional numerical analysis and this study's object is to help water managers to make the efficient decisions by applying the two-dimensional urban run off model XP-SWMM model in the flooded area and comparing with the flood prevention measures. Statistics were analyzed, based on the data collected from Cheongju Weather Service from 1967 to 2011 for 45 years. 50 years Flood frequency simulations of water flow capacity analysis of the target area for flooded areas $539,548m^2$, inundation depth 1.0 m, was analyzed by inundation time of 48 minutes. When comparing with the constructions of bypass road and underground storage facilities to increase the water flow capacity of A1 small drainage areas as flood protection, if you install a batching target underground detention basin with a capacity of $13,500m^3$, it is expected that the flood by rainfall with frequency of 50 years will be resolved completely. In preparation for extreme weather in the future flood mitigation measures, underground storage tank installation is considered a better efficient way.

Identifying dominant parameters of storm-sewer-overflows in seperate sewer system (강우시 도시배수구역의 유출특성 지배인자 분석)

  • Jung, Si Mon;Park, In Hyeok;Ha, Sung Ryong
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.105-114
    • /
    • 2008
  • Growth in population and urbanization has progressively increased the loadings of pollutants from non-point sources as well as point sources. Separated sewer overflows(SSO) have been considered as a major cause of water-quality deterioration of natural water-courses in the vicinity of the heavily urbanized areas. The factors defining the magnitude and occurrence of SSO are site-specific. It is important to know exact properties of pollutants contained in SSO to address water quality impacts that are caused by SSO inputs to the receiving waters. Site and event parameters found to have significant influences on urban runoff pollutant EMCs include total event rainfall, antecedent dry period, rainfall intensity. In this study, a field survey was carried out in some selected areas of Cheongju city. Literature from previous similar studies was consulted and some important factors affecting the runoff characteristics of urban drainage areas were analyzed for some selected survey points. It was found that the factors most affecting BOD are the number of dry days prior to rainfall and the intensity of the rainfall. The factor most affecting CODcr is the number of dry days prior to rainfall. The factors most affecting SS are the amount of rainfall and the number of dry days prior to rainfall. The factor most affecting TN is the amount of rainfall. The factor most affecting TP is the amount of rainfall and the number of dry days prior to rainfall.

  • PDF

Study on the Runoff Characteristics of Non-point Source Pollution in Municipal Area Using SWMM Model -A Case Study in Jeonju City (SWMM모델을 이용한 도시지역 비점오염원의 유출특성 연구 -전주시를 대상으로)

  • Paik Do-Hyson;Lim Young-Hwan;Choi Jin-Kyu;Jung Paul-Gene;Kwak Dong-Heui
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1185-1194
    • /
    • 2005
  • The runoff characteristics of non-point source pollutions in the municipal area of Jeonju were investigated and analyzed by using the SWMM (Storm Water Management Model). The flow rates and water qualities of runoff from two types of drainage conduits were measured respectively. One was a conventional combined sewer system and the other was a separated sewer system constructed recently From August to November in 2004, investigations on two rainfall events were performed and flow rate, pH, BOD, COD, SS, T-N and T-P were measured. These data were also used for model calibration. On the basis of the measured data and the simulation results by SWMM, it is reported that $80-90\%$ of pollution load is discharged in the early-stage storm runoff. Therefore, initial 10-30 mm of rainfall should be controlled effectively for the optimal treatment of non-point source pollution in urban area. Also, it was shown that the SWMM model was suitable for the management of non-point source pollution in the urban area and for the analysis of runoff characteristics of pollutant loads.

Urban Inundation Analysis using the Integrated Model of MOUSE and MIKE21 (MOUSE 및 MIKE21 통합모델을 이용한 도시유역의 침수분석)

  • Choi, Gye-Woon;Lee, Ho-Sun;Lee, So-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.75-83
    • /
    • 2007
  • Urbanized area has complex terrain with many flow paths. Almost stormwater is drained through pipe network because most area is impervious. And overland flow from the pipe network reform the surface flow. Therefore, it should be considered the drainage system and surface runoff both in urban inundation analysis. It is analyzed by using MIKE FLOOD integrated 1 dimension - 2 dimension model about Incheon Gyo urbanized watershed and compared with the results of 1 dimension model and 2 dimension model. At the result this approach linking of 2 dimension and 1 dimension pipe hydraulic model in MIKE FLOOD give accuracy that offers substantial improvement over earlier approach and more information about inundation such as water dapth, velocity or risk of flood, because it is possible to present storage of overland flow and topographical characteristic of area.

Loading Characteristics and Environmental Changes in Closed Coastal Water (폐쇄성 해역의 오염부하 특성과 해역환경변화)

  • Lee Chan-Won;Kwon Young-Tack;Yang Ki-Sup;Jang Pung-Guk;Han Sung-Dae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.60-70
    • /
    • 1998
  • Masan Bay is a typical enclosed coastal sea and receving body of discharges from Masan city and Changwon city. A POTW(Publicly Owned Treatment Works) started operation from November 1993 when the population of drainage area increased abcent 1.0 million and the effluent from this Plant has being discharged to the enclosed sea where is located at 15km distance from inner Masan Bay. Thus the inflow pattern to Masan Bay has been changed. The main objective of this research is to evaluate the relationship between urban wastewater discharge and water qualify change in a typical coastal zone. It is necessary a) to evaluate the change of input loadings, b) to determine the effect on water quality changes, and c) to find the respective importance of improvement options that must be controlled in the wastewater treatment plant. It was concluded that the sea water quality has being adversely affected by the discharge of insufficiently treated urban wastewater and the nutrient removal in wastewater treatment was very important and urgent.

  • PDF

Development of Green Retaining-wall System with Native Evergreen Plants Corresponding to the Southern Region - A Case Study of Tongyeong City in Gyeongsangnam-do - (남부지역의 특성을 고려한 상록벽면녹화 공법 개발 -경남 통영시를 사례로-)

  • Kang Ho-Chul;Kim Kwang-Ho;Huh Keun-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.2 s.109
    • /
    • pp.32-47
    • /
    • 2005
  • This study was carried out to investigate and propose a green-wall system with evergreen plants for urban greening of Tongyeong City. To achieve these goals, the requirements and possibilities for wall greening were investigated and evaluated considering the location, topography, and climate of Tongyeong City. Existing walls were analyzed and then a suitable green wall system is proposed. Tongyeong City and its 151 islands covers the central and the southern parts of the Goseong peninsula. Most of the land is covered with hills and mountains; $43.9\%$ of the land area has a slope greater than $15\%$ and most hills and mountains near the urban area have a slope of more than $30\%$. As a result of the topographical properties, concrete retaining walls can often be seen along the streets in urbanized areas. These retaining walls are not only unattractive, but they also create environmental problems, and thus should be replaced with native evergreen plants. Options for replacing the retaining walls include evergreen vine-plants such as Hedaa spp. and Euonymus radicans, but native evergreen shrubs such as Pittosporum tobira, Nandina domestica, Raphiolepis umbellata, Ilex cornuta, flex crenata, Fatsia japonic, and Aucuba japonica may be a more attractive option. Current wall conditions are unsuitable for planting vines, therefore, a reservoir-drainage-type plant box filled with a light artificial substrate is required for greening these concrete retaining walls. These might be irrigated in the dry season and fertilized annually by an appropriate system. These plant boxes could be attached along the entire walls. An experiment investigating effects of substrates and bark-chip mulching on the growth of Hedera spp. showed that the mixture of cerasoil and field soil(v/v, 4:6) was superior to field soil alone and to the mixture of perlite small grain, large grain, and field soil(v/v/v, 2:2:6). Bark-chip mulching tended to increase the growth of Hedera spp..

Influence of Progressive Consolidation on Consolidation Behavior of Normally Consolidated Clayey Soil with Vertical Drains (연직배수재가 설치된 정규압밀 점성토 지반의 점진적 압밀이 차후 압밀거동에 미치는 영향)

  • Yune Chan-Young;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.5-18
    • /
    • 2005
  • In this study, the influence of progressive consolidation from the drainage boundary on the subsequent process of consolidation was investigated. Analytical theory and numerical program f3r consolidation of clayey soil were developed based on finite difference method, in which spatial variation of permeability and volume compressibility were implemented. And model ground with normally consolidated clayey soils and a vertical drain at its center were simulated. Various types of soils with different relations between coefficient of volume compressibility and permeability and void ratio were applied. Also numerical simulations based on the properties of the normally consolidated clay at Nakdong River basin and reconstituted kaolinite soil were performed to recognize its practical impact. Consequently, it is found out that retardation of consolidation induced by progressive consolidation is very important to understand consolidation behavior on field conditions and its effect is remarkable at the initial state of consolidation, and increases with plasticity index and applied load.

Guideline of LID-IMPs Selection and the Strategy of LID Design in Apartment Complex (LID-IMPs 선정 가이드라인 제시와 아파트단지에서의 LID 설계)

  • Jeon, Ji-Hong;Kim, Jung-Jin;Choi, Dong Hyuk;Han, Jae Woong;Kim, Tae-Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.886-895
    • /
    • 2009
  • The guideline of selection of Integrated Management Practices (IMPs), such as wood, green roof, lawn, and porous pavement, for Low Impact Development (LID) design was proposed by ranking the reduction rate of surface runoff using LIDMOD1.0. Based on the guideline, LID was designed with several scenarios at two apartment complexes located at Songpa-gu, Seoul, Korea, and the effect of LID on surface runoff was evaluated during last 10 years. The effect of runoff reduction of IMP by land use change was highly dependent on the kind of hydrologic soil group. The wood planting is the best IMPs for reduction of surfac runoff for all hydrologic soil groups. Lawn planting is an excellent IMP for hydrologic soil group A, but reduction rate is low where soil doesn't effectively drains precipitation. The green roof shows constant reduction rate of surface runoff because it is not influenced by hydrologic soil group. Compared to the rate of other IMPs, the green roof is less effect the surface runoff reduction for hydrologic soil group A and is more effect for hydrologic soil group C and D followed to planing wood. The porous pavement for the impervious area is IMPs which is last selected for LID design because of the lowest reduction rate for all hydrologic soil group. As a result of LID application at study areas, we could conclude that the first step of the strategy of LID design at apartment complex is precuring pervious land as many area as possible, second step is selecting the kind of plant as more interception and evapotranspiration as possible, last step is replacing impervious land with porous pavement.