• Title/Summary/Keyword: Urban catchments

Search Result 28, Processing Time 0.022 seconds

A Study on the Calculation of Storage Volume of Storm-Water Detention Basins for Small Urban Catchments (도심지 소유역에 적용 가능한 우수저류조의 용량 산정에 관한 연구)

  • Kim, Dae Geun;Koh, Young Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.619-624
    • /
    • 2005
  • This work is for examining a simplified equation based on the rational formula, which can easily decide storm-water detention volume in small urban catchments. The storm-water detention volume is determined by the inflow hydrograph flowing to detention basin and the outflow hydrograph discharged from the detention basin. The ratio of average outflow over the period of rainfall duration against allowable discharge was 0.5 in former simplified equation. But this research has found that the average outflow ratio depends on the storage methodology. In the case of the on-line storage method, the average outflow ratio is a function of the time of concentration of the catchments and rainfall duration, which ranged from 0.5~1.0. In the case of the off-line storage method, the average ratio is a function of peak discharge and allowable discharge except above time of concentration and rainfall duration, where its function value ranged from 1.0~2.0. When applying this equation to small catchment in Mokpo city, South Korea, we could easily calculate the relation curve between the storm-water detention volume and allowable discharge.

A Modified Digital Elevation Modeling for Stormwater Management Planning in Segmentalized Micro-catchment Areas

  • Lee, Eun-seok
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.1
    • /
    • pp.39-51
    • /
    • 2021
  • Background and objective: Urban topology can be characterized as impervious, which changes the hydrologic features of an area, increasing surface water flow during local heavy rain events. The pluvial flooding is also influenced by the vertical structures of the urban area. This study suggested a modified digital elevation model (DEM) to identify changes in urban hydrological conditions and segmentalized urban micro catchment areas using a geographical information system (GIS). Methods: This study suggests using a modified DEM creation process based on Rolling Ball Method concepts along with a GIS program. This method proposes adding realized urban vertical data to normal DEM data and simulating hydrological analyses based on RBM concepts. The most important aspect is the combination of the DEM with polygon data, which includes urban vertical data in three datasets: the contour polyline, the locations of buildings and roads, and the elevation point data from the DEM. DEM without vertical data (DCA) were compared with the DEM including vertical data (VCA) to analyze catchment areas in Shin-wol district, Seoul, Korea. Results: The DCA had 136 catchments, and the area of each catchment ranged from 3,406 m2 to 423,449 m2. The VCA had 2,963 catchments, with the area of each ranging from 50 m2 to 16,209 m2. The most important finding is that in the overlapped VCA; the boundary of areas directly affected by flooding and the direction of surface water flow could be identified. Flooding data from September 21, 2010 and July 27, 2011 in the Shin-wol district were applied as ground reference data. The finding is that in the overlapped VCA; the boundary of areas directly affected by flooding and the direction of surface water flow could be identified. Conclusion: The analysis of the area vulnerable to surface water flooding (SWF) was more accurately determined using the VCA than using the DCA.

Decision Support System for Determination of Types and Locations of Low Impact Development Practices

  • Abdulai, Patricia Jitta;Song, Jae Yeol;Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.181-181
    • /
    • 2017
  • Low impact development (LID) practices has become important to mitigate the damage from natural disasters in urban areas. Thereby many hydrological simulation models can simulate the hydrological impact of LID practices. However, commonly used models are not able to provide specific information to most users such as where LIDs should be placed and what kind of LID should be designed. In this study, a decision support system which can be used with the EPA's SWMM was developed for the determination of LID types and locations of LID practices, named Water Management Prioritization Module (WMPM), was applied to a urbanized university campus. Eight sub-catchments were selected as feasible candidate areas for the planning of LID practices. Pre-designated infiltration trenches and permeable pavements were applied to each selected sub-catchments, followed by peak and total runoffs comparison between before/after planning of LIDs. Moreover, TOPSIS, one of a multi-criteria decision analysis method was used in the procedure of selecting target sub-catchment areas and final prioritization of LID types and locations. As a result, sub-catchments S4 with permeable pavements and S16 with infiltration trenches has shown the most decrease in total and peak runoffs, respectively. Therefore, WMPM was found to be effective in determining the best alternative among various scenarios generated and simulated.

  • PDF

Real-time monitoring sensor displacement for illicit discharge of wastewater: identification of hotspot using the self-organizing maps (SOMs) (폐수의 무단 방류 모니터링을 위한 센서배치 우선지역 결정: 자기조직화지도 인공신경망의 적용)

  • Nam, Seong-Nam;Lee, Sunghoon;Kim, Jungryul;Lee, Jaehyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • Objectives of this study were to identify the hotspot for displacement of the on-line water quality sensors, in order to detect illicit discharge of untreated wastewater. A total of twenty-six water quality parameters were measured in sewer networks of the industrial complex located in Daejeon city as a test-bed site of this study. For the water qualities measured on a daily basis by 2-hour interval, the self-organizing maps(SOMs), one of the artificial neural networks(ANNs), were applied to classify the catchments to the clusters in accordance with patterns of water qualities discharged, and to determine the hotspot for priority sensor allocation in the study. The results revealed that the catchments were classified into four clusters in terms of extent of water qualities, in which the grouping were validated by the Euclidean distance and Davies-Bouldin index. Of the on-line sensors, total organic carbon(TOC) sensor, selected to be suitable for organic pollutants monitoring, would be effective to be allocated in D and a part of E catchments. Pb sensor, of heavy metals, would be suitable to be displaced in A and a part of B catchments.

A gravity Model For The Catchments Between Parks (도시 근린공원간의 포착력에 대한 동력모형검증)

  • 권상준;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 1993
  • This study suggests one hypothesis: The strength between the catchment foreces of urban community parks can be represented to a gravity model. The gravity model is derived from the related of two subjects, witch is related with their distance. A grvity model for the catchments between parks is represented as followed formula: Iij=${\alpha}$${\times}$ $\frac{Pi$.$Pj}{${\beta}$r}$(formula) Here, Iij is a total number of the vistors of park i and j in a year. Pi is population of the catchment area of park i. Pj is population of the catchment area of park j. ${\alpha}$and, ${\beta}$ are parameters. This formula is testified in the case of Chong-ju community parks.

  • PDF

A Study on Applicability of SUSTAIN in a Korean Urban Catchment (우리나라 도시배수분구에서의 SUSTAIN 적용가능성 연구)

  • Lee, Jeonghoon;Park, Yoonkyung;Shin, Hyun-Suk;Kim, Jeongsook;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.730-738
    • /
    • 2013
  • In recent years, low impact development (LID) has emerged as an effective approach to control stormwater in an urban area, and watershed and stormwater managers need modeling tools to evaluate alternative plans for controlling stormwater. This study illustrates how to design and evaluate the effect of non-point pollutant management using SUSTAIN which is developed by USEPA. SUSTAIN can provide evaluating, selecting, and placing LID facilities in an urban catchment based on user-defined cost-effectiveness criteria. Also, this paper suggests a minimal methodology for estimating model parameters for modeling an ungauged urban catchment to reflect the situation of typical Korean urban interested catchments which are usually ungauged. In addition, the optimal length of various LID facilities and the optimal number of units in our test catchment are estimated.

Characteristics on Seasonal Variation of Stream Water Quality on Upland Headwater Streams in Forested Catchments (산림유역의 계류수질 현황 및 계절적 변동 특성)

  • Nam, Sooyoun;Lim, Honggeun;Li, Qiwen;Choi, Hyung Tae;Yang, Hyunje;Kim, Jaehoon
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.5
    • /
    • pp.220-230
    • /
    • 2022
  • Seasonal variability of water quality in the upland headwater streams in ten forested catchments (37.0~209.0 ha) was examined from April to November 2021. Here, seven physicochemical parameters were analyzed including pH, electrical conductivity (EC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (T-N), total phosphorous (T-P), and BOD/TOC. The parameters were compared with those of lowerland rivers as middle and lower reaches within a watershed. The pH showed was low (6.4~6.9) during all the seasons, however, BOD and BOD/TOC in the fall season were 2-fold higher than in the spring and summer seasons. Based on environmental standards, the water quality level revealed that the upland headwater streams maintained the purity and cleanliness of water except for pH in the summer season. BOD/TOC of all the seasons and BOD of the fall season in the upland headwater streams were higher than that in the lowerland rivers, whereas the rest of the physicochemical parameters in the upland headwater streams were lower than that in the lowerland rivers. Additionally, the water quality level maintained the purity and cleanliness of water as "Good" in two reaches. The unique aspects of our study design enabled us to draw inferences about water quality characteristics with temporal and spatial analysis in upland headwater streams. This design will be useful for the long-term strategy of effective water quality management for integrated upland headwater streams and lowerland rivers within a watershed.

Equilibrium Point Model Of Urban Community Parks Based On A Centrality Index Model (중심지리론에 의한 도시근린공원의 세력균점점리론 모형)

  • 권상준;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.2
    • /
    • pp.120-128
    • /
    • 1993
  • This study suggests one hypothesis: The strength of the catchment forces of urban community parks can be represented as an equilibrium point model, which is derived from a centrality index for. That model was designed by Reilly(1931) and developed by Godlund(1956). An equilibrium point model for the catchments is represented as followed formulae: m=$\frac{CA2}{CA-CB}$ m=$\frac {{{{{L SQRT {{C}_{A}$.$ {C}_{B}} {CA-CB} Here, m is distance from the center of park A to the cetner of park B. r is radius of a circle where the catchment between park A and B is equal pointed traces. CA is index of the centrality of park A from Reilly's Law. CB is an index of the centrality of park B from Reilly's Law. L is an the distance between park A and B. The equilibrium point model is testified in the case of Chong-ju community parks. The testification has been limited to the application to such manifest outdoor recreational facilities as bentches, even though there are statistically and economically problems for a quantitative model to be testified. But the testification could be a rationale for the catchment forces of urban community parks, which was quantitatively represented that the distance between two or there parks should be related with the feasibility of the parks. Therefore, the urban community park should be planned to be located, hiving separately its identity that might be considered with the facility diversification and the locational competitiveness of a park.

  • PDF

DEM Based Urban Inundation Analysis Model Linked with SWMM (SWMM을 연계한 DEM기반의 도시침수해석 모형)

  • Lee, Chang-Hee;Han, Kun-Yeun;Choi, Kyu-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.441-452
    • /
    • 2006
  • Recently the natural damage associated with flood disaster has been dramatically increased. Especially, inundation in the urban area causes serious damage to people and assets because of the concentration of infrastructure and population growth. The purpose of this study is to develop a new urban inundation model combining a storm sewer system model and a 2D overland-flow model for the estimation inundation depth In urban area caused by the surcharge of storm sewers. The movement of water in the studied urban watershed is characterized by two components, namely, the storm sewer flow component and the surcharge-induced inundation component. The model was applied to Goonja and Jangan catchments. Inundated depths were presented to demonstrate model simulation results. The simulation results can help the authority decide preventing flood damages by redesigning and enlarging the capacities of storm sewer systems in the inundation-prone areas. The model can also be applied to make the potential inundation area map and establish flood-mitigation measures as a part of the decision support system for flood control authority.

Analysis of Urban Flood Damage Using SWMM5 and FLUMEN Model of Sadang Area in Korea

  • Li, Heng;Kim, Yeonsu;Lee, Seungsoo;Song, Miyeon;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.396-396
    • /
    • 2015
  • Frequent urban floods affect the human safety and economic properties due to a lack of the capacity of drainage system and the increased frequency of torrential rainfall. The drainage system has played an important role in flooding control, so it is necessary to establish the effective countermeasures considering the connection between drainage system and surface flow. To consider the connection, we selected SWMM5 model for analyzing transportation capacity of drainage system and FLUMEN model for calculating inundation depth and time variation of inundation area. First, Thiessen method is used to delineate the sub-catchments effectively base on drainage network data in SWMM5. Then, the output data of SWMM5, hydrograph of each manhole, were used to simulate FLUMEN to obtain inundation depth and time variation of inundation area. The proposed method is applied to Sadang area for the event occurred in $27^{th}$ of July, 2011. A total of 11 manholes, we could check the overflow from the manholes during that event as a result of the SWMM5 simulation. After that, FLUMEN was utilized to simulate overland flow using the overflow discharge to calculate inundation depth and area on ground surface. The simulated results showed reasonable agreements with observed data. Through the simulations, we confirmed that the main reason of the inundation was the insufficient transportation capacities of drainage system. Therefore cooperation of both models can be used for not only estimating inundation damages in urban areas but also for providing the theoretical supports of the urban network reconstruction. As a future works, it is recommended to decide optimized pipe diameters for efficient urban inundation simulations.

  • PDF