• Title/Summary/Keyword: Urban area flood

Search Result 287, Processing Time 0.024 seconds

A Study on Urban Inundation Prediction Using Urban Runoff Model and Flood Inundation Model (도시유출모형과 홍수범람모형을 연계한 내수침수 적용성 평가)

  • Tak, Yong Hun;Kim, Jae Dong;Kim, Young Do;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.395-406
    • /
    • 2016
  • Population and development are concentrated by urbanization. Consequently, the usage of underground area and the riverside area have been increased. By increasing impermeable layer, the urban basin drainage is depending on level of sewer. Flood damage is occurred by shortage of sewer capacity and poor interior drainage at river stage. Many of researches about flood stress the unavailability of connection at the river stage with the internal inundation organically. In this study, flood calculated considering rainfall and combined inland-river. Also, using urban runoff model analyze the overflow of sewer. By using results of SWMM model, using flood inundation analysis model analyzed internal drainage efficiency of drainage system. Applying SWMM model, which results to flood inundation analysis model, analyzes internal drainage efficiency of drainage system under localized heavy rain in a basin of the city. The results of SWMM model show the smoothness of internal drainage can be impossible to achieve because of the influence of the river level and sewer overflow appearing. The main manholes were selected as the manhole of a lot of overflow volume. Overflow reduction scenarios were selected for expansion of sewer conduit and instruction retention pond. Overflow volume reduces to 45% and 33~64% by retention pond instruction and sewer conduit expansion. In addition, the results of simulating of flood inundation analysis model show the flood occurrence by road runoff moving along the road slope. Flooded area reduces to 19.6%, 60.5% in sewer conduit expansion scenarios.

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis (도시침수 해석을 위한 동적 인공신경망의 적용 및 비교)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.671-683
    • /
    • 2018
  • The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.

Constructing the integrated information system for the coast disaster area management using 3D web GIS technology

  • Jo Myung-Hee;Shin Dong-Ho;Pak Hyeon-Cheol;Hae Young-Jin;Kim Hyoung-Sub;Kim Jin-Sub
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.318-321
    • /
    • 2004
  • The damage scale and damage area in the coast have been increased dramatically because of calamities such as typhoon. tidal wave. flood and storm. Especially. 409 cases. which reach to about $40.9\%$ of natural disasters of 1,000 cases for the recent 15 years have happened on coast area. More than $40\%$ of natural disasters also occurred every year is happening in coastland. Therefore, there is a great need to construct all related GIS database such as atmospheric phenomena (typhoon. tidal wave, flood and storm). harbor facility, harbor traffic and ebb and flow. Furthermore. the certain system should be developed and integrated with NDMS (National Disaster Management System) by using 3D web GIS technology. In this study. the coast disaster area management system was designed and developed by using 3D web GIS technique so that the coast disaster area could be monitored and managed in real time and in visual. Finally. the future disaster in coast area could be predicted scientifically.

  • PDF

Flooding Area Estimation and Evacuation Path Analysis (침수취약지역 추정과 주민들의 대피경로 분석)

  • Park, Jong-Duk;Choi, Jin-Mu
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • Recently urban area has suffered from frequent flood event by local heavy rain. This study performed flood tests for the Jungnang river using HEC-RAS model. Based on 1m LiDAR data, river geometry data were produced using HEC-GeoRAS. For 100-year frequency flood, 200-year frequency flood, and PMF, flooding areas were estimated. Ten sub-zones of the entire flooding area were identified based on the nearest refugees and used to analyze evacuation paths to the refugees. The results showed that approximately 70% of flooded area were residential, commercial, and transportation areas so that much loss of life and property could be possible. Path analysis showed that the shortest path distances to refugees were about 1000m average. Evacuation warning given at a proper period could minimize loss of life and property. This study provides the guideline for flood evacuation plan in urban area.

Estimation of the Flood Area Using Multi-temporal RADARSAT SAR Imagery

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Yoo, Hwan-Hee;Jung, Won-Jo
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.37-46
    • /
    • 2002
  • Accurate classification of water area is an preliminary step to accurately analyze the flooded area and damages caused by flood. This step is especially useful for monitoring the region where annually repeating flood is a problem. The accurate estimation of flooded area can ultimately be utilized as a primary source of information for the policy decision. Although SAR (Synthetic Aperture Radar) imagery with its own energy source is sensitive to the water area, its shadow effect similar to the reflectance signature of the water area should be carefully checked before accurate classification. Especially when we want to identify small flood area with mountainous environment, the step for removing shadow effect turns out to be essential in order to accurately classify the water area from the SAR imagery. In this paper, the flood area was classified and monitored using multi-temporal RADARSAT SAR images of Ok-Chun and Bo-Eun located in Chung-Book Province taken in 12th (during the flood) and 19th (after the flood) of August, 1998. We applied several steps of geometric and radiometric calculations to the SAR imagery. First we reduced the speckle noise of two SAR images and then calculated the radar backscattering coefficient $(\sigma^0)$. After that we performed the ortho-rectification via satellite orbit modeling developed in this study using the ephemeris information of the satellite images and ground control points. We also corrected radiometric distortion caused by the terrain relief. Finally, the water area was identified from two images and the flood area is calculated accordingly. The identified flood area is analyzed by overlapping with the existing land use map.

  • PDF

Development of Urban Flood Risk Maps for Strengthening Urban Planning Toward Disaster Prevention (재해예방형 도시계획 지원을 위한 도시침수 위험도 공간정보 개발)

  • Lee, Jongso;Lee, Sangeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • This study aims to propose the methods for urban flood risk maps which are useful in strengthening urban planning toward disaster prevention by climate change. Selecting the Gwangju city, Gyeonggi-do as study area, it analyzes urban flood at a RCP 8.5 scenario, and develops gridded information regarding risk components such as hazard, exposure, and vulnerability. It turns out that flooding would occur at a bend interval of the Mokhyun stream and also at the joint of the Gyungan and the Mokhyun streams, showing the similarity with the inundation trace map. In particular, the Songjeong dong is analyzed to be seriously exposed and to be highly vulnerable to flood inundation. With all results together, this study concludes that the proposed methods could be used as a basis for strengthening urban planning toward flood disaster prevention system.

Flood Inundation Analysis using XP-SWMM Model in Urban Area (XP-SWMM 모형을 적용한 도시지역의 침수해석)

  • Lee, Jong-Hyeong;Yeon, Kee-Seuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.155-161
    • /
    • 2008
  • The flood damage shows different types in natural river watershed and in urban drainage watershed. In recent, increasing of the impervious area gives rise to short concentration time and high peak discharge comparing with natural watershed and it is a cause of urban flood damage. In this paper, we use a XP-SWMM model developed based on EPA-SWMM version for analyzing the inundation area, inundation depth and inundation area considering building effect. The two events(2005.06, 2005.07) has been used for the validation of model. HEC-RAS model has been applied for simulation of changing water level, and the results has been used for calculating area of the inundation. The observed inundation area(21.41 ha) in August, 1998 was in good agreement with the simulated value(23.45 ha) of XPSWMM model. An influence of inundation area considering building effects has been analized by the DTM of XP-SWMM model.

Assessing the Effect of Water and Heat Cycle of Green Roof System using Distributed Hydrological Model in Urban Area (분포형 수문모형을 이용한 도시지역 옥상녹화에 따른 물 및 열순환 영향 평가)

  • Jang, Cheol Hee;Kim, Hyeon Jun;Kim, Yeon Mee;Nam, Mi A
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.33-41
    • /
    • 2013
  • The impervious area on the surface of urban area has been increased as buildings and artificial land cover have continually been increased. Urban development has gradually decreased the green zone in downtown and alienated the city from the natural environment on outskirt area devastating the natural ecosystem. There arise the environmental problems to urban area including urban heat island phenomenon, urban flood, air pollution and urban desertification. As one of urban plans to solve such problems, green roof system is attracting attentions. The purpose of this study was to investigate flood discharge and heat reduction effect according to the green roof system and to quantify effect by analyzing through simulation water and heat cycle before and after green roof system. For the analysis, Distributed hydrologic model, WEP (Water and Energy transfer Processes) and WEP+ model were used. WEP was developed by Dr. Jia, the Public Works Research Institute in Japan (Jia et al., 2005), which can simulate water and heat cycle of an urban area with complex land uses including calculation of spatial and temporal distributions of water and heat cycle components. The WEP+ is a visualization and analysis system for the WEP model developed by Korea Institute of Construction Technology (KICT).

A Numerical Study on Characteristics of Flood Wave Passing through Urban Areas (2) : Application and Analysis (도시지역을 관통하는 홍수파의 특성에 관한 수치적 연구 (2) : 적용 및 분석)

  • Jeong, Woo-Chang;Cho, Yong-Sik;Lee, Jin-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • In this study, the effects of urban areas against flood waves due to a dam failure were numerically investigated based on the two laboratory experiments and the predicted water surface elevations at specific points showed good agreement with available measurements. In the first experiment, a relatively high water depth and the delay effect of flow at the front of urban areas are observed. The urban areas may become a large obstacle against smooth propagation of flood wave. In the second one, as the inflow increases, moreover, the water surface elevations can be classified into abruptly decreasing portion and slowly decreasing portion, and the first arrival time to the front of urban area is decreasing with the increasing inflow.

Flood Inundation Analysis in Urban Area Using XP-SWMM (XP-SWMM 모형을 이용한 도심지역 침수해석)

  • Kim, Jinsu;Lee, Wonho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Current domestic research is to demonstrate the effectiveness and efficiencies of flood prevention measures through one-dimensional numerical analysis and this study's object is to help water managers to make the efficient decisions by applying the two-dimensional urban run off model XP-SWMM model in the flooded area and comparing with the flood prevention measures. Statistics were analyzed, based on the data collected from Cheongju Weather Service from 1967 to 2011 for 45 years. 50 years Flood frequency simulations of water flow capacity analysis of the target area for flooded areas $539,548m^2$, inundation depth 1.0 m, was analyzed by inundation time of 48 minutes. When comparing with the constructions of bypass road and underground storage facilities to increase the water flow capacity of A1 small drainage areas as flood protection, if you install a batching target underground detention basin with a capacity of $13,500m^3$, it is expected that the flood by rainfall with frequency of 50 years will be resolved completely. In preparation for extreme weather in the future flood mitigation measures, underground storage tank installation is considered a better efficient way.