• Title/Summary/Keyword: Urban air quality

Search Result 388, Processing Time 0.03 seconds

Estimation of Dry Deposition in Urban Area, 2005 (2005년 도시지역의 건성침적량 산정에 관한 연구)

  • Shin S.A.;Han J.S.;Lee S.D.;Choi J.S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.477-486
    • /
    • 2006
  • Dry deposition fluxes for $SO_2$, particulate sulfate, nitrate, ammonium and $HNO_3$ were estimated in urban area for the time period January$\sim$ October 2005. Fluxes were generated using atmospheric concentration data collected both in Acid Deposition and Air Quality Monitoring Networks, and deposition velocities computed by combining land-use data with meteorological information. The resulting annually averaged $SO_2$, $NO_3$, and aerosol deposition velocities were found to be 0.4 cm/s, 4.3 cm/s and 0.1 cm/s, respectively, and thus deposition rates were 4.4 mg/$m^2$. day for $SO_2$, and 5.4 mg/$m^2$ . day for $NHO_3$, and particulate sulfate, ammonium and nitrate recorded 1.0 mg/$m^2$ . day, 0.4 mg/$m^2$ . day and 0.4 mg/$m^2$ day, respectively. Maximum for in seasonal variation of monthly averaged deposition velocities occurred in summer in contrast to $HNO_3$ showing peak in spring. There was no significant variation for aerosol. The dry to total (wet and dry) deposition contributed about 40% for sulfur and 28% for nitrogen species in this study.

An Analysis of Wind Field around the Air Quality Monitoring Station in the Urban Area by Using the Envi-met Model (Envi-met 모델을 이용한 도심지역 대기오염측정망 주변의 바람장 분석)

  • Kim, Min-Kyoung;Lee, Hwa Woon;Dou, Woo-Gon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.941-952
    • /
    • 2009
  • The urban microscale wind field around the air quality monitoring station was investigated in order to check how a building complex influences it. For this study as the high density areas Jwa-dong and Yeonsan-dong monitoring sites in Busan were chosen. As the direction of inflow which is perpendicular to the building of the monitoring station was expected to cause the considerable variation of the wind field, that direction was selected. The model Envi-met was used as the diagnostic numerical model for this study. It is suitable for this investigation because Envi-met has the microscale resolution. After simulating it, on the leeward side around a building complex the decrease of flow velocity and some of vortexes or circulation area were discovered. In addition, on the edge of the top at the building and at the back of the building the upward flow was developed. If the sampling hole of monitoring site were located in this upward flow, it would be under the influence of upward flow from the near street.

Characteristics of long-range transported PM2.5 at a coastal city using the single particle aerosol mass spectrometry

  • Cai, Qiuliang;Tong, Lei;Zhang, Jingjing;Zheng, Jie;He, Mengmeng;Lin, Jiamei;Chen, Xiaoqiu;Xiao, Hang
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.690-698
    • /
    • 2019
  • Air pollution has attracted ever-increasing attention because of its substantial influence on air quality and human health. To better understand the characteristics of long-range transported pollution, the single particle chemical composition and size were investigated by the single particle aerosol mass spectrometry in Fuzhou, China from 17th to 22nd January, 2016. The results showed that the haze was mainly caused by the transport of cold air mass under higher wind speed (10 m·s-1) from the Yangtze River Delta region to Fuzhou. The number concentration elevated from 1,000 to 4,500 #·h-1, and the composition of mobile source and secondary aerosol increased from 24.3% to 30.9% and from 16.0% to 22.5%, respectively. Then, the haze was eliminated by the clean air mass from the sea as indicated by a sharp decrease of particle number concentration from 4,500 to 1,000 #·h-1. The composition of secondary aerosol and mobile sources decreased from 29.3% to 23.5% and from 30.9% to 23.1%, respectively. The particles with the size ranging from 0.5 to 1.5 ㎛ were mainly in the accumulation mode. The stationary source, mobile source, and secondary aerosol contributed to over 70% of the potential sources. These results will help to understand the physical and chemical characteristics of long- range transported pollutants.

Evaluation of Air Pollution Monitoring Networks in Seoul Metropolitan Area using Multivariate Analysis (다변량분석법을 활용한 수도권지역의 대기오염측정망 평가)

  • Choi, Im-Jo;Jo, Wan-Keun;Sin, Seung-Ho
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.673-681
    • /
    • 2016
  • The adequacy of urban air quality monitoring networks in the largest metropolitan city, Seoul was evaluated using multivariate analysis for $SO_2$, $NO_2$, CO, PM10, and $O_3$. Through cluster analysis for 5 air pollutants concentrations, existing monitoring stations are seen to be clustered mostly by geographical locations of the eight zones in Seoul. And the stations included in the same cluster are redundantly monitoring air pollutants exhibiting similar atmospheric behavior, thus it can be seen that they are being operated inefficiently. Because monitoring stations groups representing redudancy were different depending on measurement items and several pollutants are being measured at the same time in each air monitoring station, it is seemed to be not easy to integrate or transmigrate stations. But it may be proposed as follows : the redundant stations can be integrated or transmigrated based on ozone of which measures are increasing in recent years and alternatively the remaining pollutants other than the pollutant exhibiting similar atmospheric behavior with nearby station's can be measured. So it is considered to be able to operate air quality monitoring networks effectively and economically in order to improve air quality.

Effects of Building-roof Cooling on Scalar Dispersion in Urban Street Canyons (도시 협곡에서 건물 지붕 냉각이 스칼라 물질 확산에 미치는 영향)

  • Park, Soo-Jin;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.331-341
    • /
    • 2014
  • In this study, the effects of building-roof cooling on scalar dispersion in three-dimensional street canyons are investigated using a computational fluid dynamics (CFD) model. For this, surface temperature of building roof is systematically changed and non-reactive pollutants are released from street bottom in urban street canyons with the aspect ratio of 1. The characteristics of flow, air temperature, and non-reactive pollutant dispersion in the control experiment are analyzed first. Then, the effects of building-roof cooling are investigated by comparing the results with those in the control experiment. In the control experiment, a portal vortex which is a secondary flow induced by ambient air flow is formed in each street canyon. Averaged air temperature is higher inside the street canyon than in both sides of the street canyon, because warmer air is coming into the street canyon from the roof level. However, air temperature near the street bottom is lower inside the street canyon due to the inflow of cooler air from both sides of the street canyon. As building-roof temperature decreases, wind speed at the roof level increases and portal vortex becomes intensified (that is, downdraft, reverse flow, and updraft becomes stronger). Building-roof cooling contributes to the reduction of average concentration of the non-reactive pollutants and average air temperature in the street canyon. The results imply that building-roof cooling has positive effects on improvement of thermal environment and air quality in urban areas.

Air Quality Modeling of Ozone Concentration According to the Roughness Length on the Complex Terrain (복잡지형에서의 지표면 거칠기에 따른 오존 농도 수치모의)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Sung, Kyoung-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.430-439
    • /
    • 2007
  • The objective of this work is the air quality modeling according to the practical roughness length using the building information as surface boundary conditions. As accurate wind and temperature field are required to produce realistic urban air quality modeling, comparative simulations by various roughness length are discussed. The prognostic meteorological fields and air quality field over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model (MM5) and the Third Generation Community Multi-scale Air Quality Modeling System (Models-3/CMAQ), respectively. The simulated $O_3$ concentration on complex terrain and their interactions with the weak synoptic flow had relatively strong effects by the roughness length. A comparison of the three meteorological fields of respective roughness length reveals substantial localized differences in surface temperature and wind folds. Under these conditions, the ascended mixing height and weakened wind speed at night which induced the stable boundary stronger, and the difference of simulated $O_3$ concentration is $2{\sim}6\;ppb$.

Furniture Layout and Design for Better Indoor Air Quality in Office Buildings

  • Leung, Luke
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.69-74
    • /
    • 2022
  • - COVID -19 taught us a lot about how to protect our tall buildings from infectious diseases. This paper captures the lessons learned about airflow in indoor spaces when considering furniture and its placement. By applying them we move towards future proofing our buildings both in normal and pandemic times.

Construction and Case Analysis of Detailed Urban Characteristic Information on Seoul Metropolitan Area for High-Resolution Numerical Weather Prediction Model (고해상도 수치예보모델을 위한 수도권지역의 상세한 도시특성정보 구축 및 사례 분석)

  • Lee, Hankyung;Jee, Joon-Bum;Yi, Chaeyeon;Min, Jae-Sik
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.567-583
    • /
    • 2019
  • In this study, the high-resolution numerical simulations considering detailed anthropogenic heat, albedo, emission and roughness length are analyzed by using single layer Urban Canopy Model (UCM) in Weather Research Forecast (WRF). For this, improved urban parameter data for Seoul Metropolitan Area (SMA) was collected from global data. And then the parameters were applied to WRF-UCM model after it was processed into 2-dimensional topographical data. The 6 experiments were simulated by using the model with each parameter and verified against observation from Automated Weather Station (AWS) and flux tower for the temperature and sensible heat flux. The data for sensible heat flux of flux towers on Jungnang and Bucheon, the temperature of AWS on Jungnang, Gangnam, Bucheon and Neonggok were used as verification data. In the case of summer, the improvement of simulation by using detailed anthropogenic heat was higher than the other experiments in sensible flux simulation. The results of winter case show improved in all simulations using each advanced parameters in temperature and sensible heat flux simulation. Improvement of urban parameters in this study are possible to reflect the heat characteristics of urban area. Especially, detailed application of anthropogenic heat contributed to the enhancement of predicted value for sensible heat flux and temperature.

Research & Development of High Capacity ECO-HVAC System (고용량 친환경적 HVAC 시스템 연구개발)

  • Park, Sung-Hyuk;Oh, Seh-Chan;Lee, Chang-Mu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.187-190
    • /
    • 2007
  • Nowadays, with urban railway vehicles, refrigeration has been used for a long time as an air conditioner including a heating apparatus and a ventilator. Regarding saveenergy, there are lots of researches continually on the refrigeration field to reduce the parts' weight, improve the parts' efficiency and make good looking design of air conditioners. Moreover, we are able to see the recent achievement of the researches. As a result, through this research we improve the quality of inner air with the urban railway system and make a domestic HVAC system by technical development of high capacity air conditioner and the principal parts.

  • PDF