• Title/Summary/Keyword: Urban air quality

Search Result 388, Processing Time 0.028 seconds

Ambient Air Concentrations of Benzene, Toluene, Ethylbenzene and Xylene in Bangkok, Thailand during April-August in 2007

  • Laowagul, Wanna;Garivait, Hathairatana;Limpaseni, Wongpun;Yoshizumi, Kunio
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.14-25
    • /
    • 2008
  • Benzene, toluene, ethyl benzene and m-, p-, and o-xylene, the most influential aromatic volatile organic compounds (VOCs), were measured in Bangkok, Thailand, one of the most rapidly developing urban areas in Southern East Asia. The purpose of this study is to characterize the ambient air quality with respect to above mentioned aromatic compounds. The data were monitored in ten sites which cover roadside area, residential area and background area. Canister technique was used to obtain air sample at 24 hour interval per a month during April-August in 2007. GC/MS with three stage preconcentrator was used to analyze these samples. The average concentrations of benzene, toluene, ethyl benzene m-, p-xylene and o-xylene are 5.8, 36.1, 4.1, 11.0 and $3.7{\mu}g/m^3$, respectively. They were observed to be distributed in a log-normal form. Moreover, o-xylene and m, p-xylene exhibited a very good correlation (r=0.976). The slope of the regression equation between them was 3.07 which consisted with a previous reported value. The average ratio of toluene to benzene was 6.4 in April, May June and August. This value was comparable to the ones measured in other Asian cities. Two types of statistical analyses, cluster and factor analyses, were applied to the data in this study. Well characterization was made to understand the air quality of Bangkok area.

Indoor Air Data Meter and Monitoring System (실내 공기 데이터 측정기 및 모니터링 시스템)

  • Jeon, Sungwoo;Lim, Hyunkeun;Park, Soonmo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.140-145
    • /
    • 2022
  • In an advanced modern society, among air pollutants caused by urban industrialization and public transportation, fine dust flows into indoors from the outdoors. The fine dust meter used indoors provides limited information and measures the pollution level differently, so there is a problem that users cannot monitor and monitor the data they want. To solve this problem, in this paper, indoor air quality data fine dust and ultra-fine dust (PM1.0, PM2.5, PM10), VOC (Volatile Organic Compounds) and PIR (Passive Infrared Sensor) are used to measure fine dust. and a monitoring system were designed and implemented. We propose a fine dust meter and monitoring system that is installed in a designated area to measure fine dust in real time, collects, stores, and visualizes data through App Engine of Google Cloud Platform and provides it to users.

Analysis of PM2.5 Concentration and Contribution Characteristics in South Korea according to Seasonal Weather Patternsin East Asia: Focusing on the Intensive Measurement Periodsin 2015 (동아시아 지역의 계절별 기상패턴에 따른 우리나라 PM2.5 농도 및 기여도 특성 분석: 2015년 집중측정 기간을 중심으로)

  • Nam, Ki-Pyo;Lee, Dae-Gyun;Jang, Lim-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.183-200
    • /
    • 2019
  • In this study, the characteristics of seasonal $PM_{2.5}$ behavior in South Korea and other Northeast Asian regions were analyzed by using the $PM_{2.5}$ ground measurement data, weather data, WRF and CMAQ models. Analysis of seasonal $PM_{2.5}$ behavior in Northeast Asia showed that $PM_{2.5}$ concentration at 6 IMS sites in South Korea was increased by long-distance transport and atmospheric congestion, or decreased by clean air inflow due to seasonal weather characteristics. As a result of analysis by applying BFM to air quality model, the contribution from foreign countries dominantly influenced the $PM_{2.5}$ concentrations of Baengnyeongdo due to the low self-emission and geographical location. In the case of urban areas with high self-emissions such as Seoul and Ulsan, the $PM_{2.5}$ contribution from overseas was relatively low compared to other regions, but the standard deviation of the season was relatively high. This study is expected to improve the understanding of the air pollutant phenomenon by analyzing the characteristics of $PM_{2.5}$ behavior in Northeast Asia according to the seasonal weather condition change. At the same time, this study can be used to establish the air quality policy in the future, knowing that the contribution of $PM_{2.5}$ concentration to the domestic and overseas can be different depending on the regional emission characteristics.

Characteristics of Air Quality in the West Coastal Urban Atmosphere; Characteristics of VOCs Concentration Measured from an Industrial Complex Monitoring Station at Gunsan and a Roadside Station at Jeonju (서해연안 도시지역의 대기질 특성 연구: 군산시 산업단지와 전주시 도로변에서 VOCs 농도분포 특성 연구)

  • Ryoo, Jae-Youn;Kim, Deug-Soo;Chae, Soo-Cheon;Nam, Tu-Cheon;Choi, Yang-Seock
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.633-648
    • /
    • 2010
  • The study was performed to elucidate the characteristics of VOCs at distinct monitoring sites in urban atmosphere; one is at a roadside in downtown inland city of Jeonju, and the other is at an industrial site in Gunsan near coastal area. The ambient samples were collected for 24 hours in two-bed adsorbent tubes by using MTS-32 sequential tube sampler equipped with Flex air pump every 16 days in a roadside and a industrial complex from February to November in 2009. VOCs were determined by thermal desorption coupled with GC/MSD. Major individual VOCs in roadside samples were shown as following order in magnitude: toluene>m,p-xylene>ethyl benzene>decanal; and those in the industrial complex samples were as follows: toluene>ethanol>ethyl acetate>decanal>m,pxylene. High benzene concentration in the roadside was more frequently occurred than in the industrial complex. However ambient level of toluene in the industrial complex was higher than that in the road side. Results from roadside sample analysis showed that nonane and 1,2,4-trimethylbenzene were very frequently observed with higher concentrations than those in the industrial complex. It seems that nonane and 1,2,4-trimethylbenzene could be the source characteristics for the roadside air. From the diurnal variation, it was found that concentrations of benzene, ethylbenzene, xylene, nonane and 1,2,4-trimethylbenznene in the roadside were higher during rush hours; but those in the industrial complex were higher from 10 to 16 LST when the industrial activities were animated. On weekly base, the concentration of benzene, toluene, ethylbenzene and m,p-xylene in the roadside were higher specifically on Wednesday, but those in the industrial complex were higher on Sunday. It was found that the general trends of VOCs levels at both sites significantly influence on seasonal changes. The results of factor analysis showed that the VOCs in the roadside were mainly affected by the emission of vehicles and the evaporation of diesel fuel, meanwhile those in the industrial complex were influenced by the evaporation of solvents and vehicular emission.

Modular Building for Urban Disaster Housing: Case Study of Urban Post-Disaster Housing Prototype in New York

  • Ford, George;Ahn, Yong Han;Choi, Don Mook
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.82-89
    • /
    • 2014
  • Disasters that destroy homes and infrastructure and cause significant financial damage are becoming more common as population centers grow. In addition, several natural disasters have resulted in a major loss of life and created countless refugees due to damage to housing. After major catastrophic disasters, it is very important that the government agencies respond to post-disaster housing issues and provide resources such as temporary housing before the full rehabilitation and reconstruction of destroyed and damaged housing. To provide affordable temporary housing for residents who may lose their homes as the result of a catastrophic disaster including storms, government agencies must develop a post-disaster housing prototype. In general, government agencies should explore several different forms of factory-built single-story, single family housing, such as modular homes, panelized homes, and precut homes. In urban cities including New York and Seoul, it is very important to provide housing which supports the demand for higher-density living spaces than single-family homes or trailers typically available due to the high population density and the desire to resettle as many residents as possible in their former neighborhoods. This study identified the urban post-disaster housing prototypes that may provide higher density housing with high quality living spaces, high air quality, and energy efficiency as well as rapid deployment. A case study of "Urban Post-Disaster Housing Prototype Program in New York" was conducted through a detailed interview process with a designer, engineer, contractor, the Office of Emergency Management (OEM) in New York, the U.S. Army Corps of Engineers (USACE), and temporary occupants. An appropriate disaster housing program that can provide living spaces for victims of disasters that keeps residents in their community and allows them to live and work in their neighborhoods was developed.

GIS-based PM10 Concentration Real-time Service (GIS기반 PM10 미세먼지농도 실시간 서비스)

  • Yoon, Hoon Joo;Han, Gwang In;Cho, Sung Ho;Jung, Byung hyuk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.585-592
    • /
    • 2015
  • In this study, by applying mobile based GIS and image analysis of particulate matter ($PM_{10}$) concentration in Seoul and Ulsan in Korea, to identify the user's location and also implemented the application to information exchange. It strengthened citizens' access to air quality information through the application and derived the expanded environment information sharing through real-time user participation. Through atmospheric concentrations image analysis, it showed a new environmental information construction possibility. It had the effect of expanding the information collecting through the local user participation on the limited information collected area which place is not yet constructed atmospheric monitoring network. Location-based particulate matter information service application provides a user location's $PM_{10}$ information from the 25 urban air monitoring network real-time database of the Ministry of Environment. Furthermore, if the user sent a picture of the atmosphere to the server, should match the image density values of the database and express on Seoul's maps through the IDW interpolation. And then a $PM_{10}$ concentration result is transmitted to user in real time.

Numerical Interpolation on the Simulation of Air Flow Field and the Effect of Data Quality Control in Complex Terrain (객관 분석에 의한 복잡지형의 대기유동장 수치모의와 모델에 의한 자료질 조절효과)

  • Lee Hwa woon;Choi Hyun-Jung;Lee Kang-Yoel
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.97-105
    • /
    • 2005
  • In order to reduce the uncertainties and improve the air flow field, objective analysis using asynoptic observational data is chosen as a method that enhances the reality of meteorology. In surficial data and their numerical interpolation for improving the interpretation of meteorological components, objective analysis scheme should perform a smooth interpolation, detect and remove the bad data and carry out internal consistency analysis. For objective analysis technique which related to data reliability and error suppression, we carried out two quality control methods. In site quality control, asynoptic observational data at urban area revealed low representation by the complex terrain and buildings. In case of wind field, it was more effective than temperature field when it were interpolated near waterbody data. Many roads, buildings, subways, vehicles are bring about artificial heat which left out of consideration on the simulation of air flow field. Therefore, in temperature field, objective analysis for more effective result was obtained when surficial data were interpolated as many as possible using value quality control rather than the selection of representative site.

On the Recent Air Pollution Levels Observed in the Regional Air Monitoring Network -High Air Pollution Concentration Episodes and Their Meteorological Characteristics in 2002 (지역 대기질 측정망에 나타난 국내 대기오염도의 최근 동향 -2002년 고농도 사례 및 그 기상 특징)

  • Kim C.-H;Park I.-S;Lee S.-J;Kim J.-S;Jin H.-A;Sung H.-G
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.215-224
    • /
    • 2004
  • We report the high concentration episodes for PM$_{10}$, SO$_2$, NO$_2$, and $O_3$ in many urban areas Korea during 2002. The high concentration episodes are identified based on the National Ambient Air Quality Standards and the observations obtained from the Regional Air Monitoring Network composed of approximately 160 air pollution monitoring stations located in a number of major or big cities in South Korea including Seoul, Pusan, Daegu, and Incheon cities. The results show that the twenty cases of high concentration episodes in 2002 consists of both ozone warning episodes (6 cases) and high PM$_{10}$ concentration cases (14 cases), and one half of the latter are found to occur in association with the Yellow Sand (Asian Dust) phenomena. The most outstanding characteristics of the reported episodes are the excessively high levels of maximum PM$_{10}$ concentrations during the Yellow Sand period (i.e., exceeding 3,000$\mu\textrm{g}$/㎥ in April, 2002) and their variable occurrence frequencies across seasons. The high ozone concentration episode days are mainly resulting from both the high photochemical reactions and poor ventilations. The high PM$_{10}$ concentration days during non Yellow Sand periods, however, mostly occurred under the influence of synoptic meteorological conditions such as stagnant or slowly passing high pressure centers, and consequently prevailing weak wind speeds over the Korean peninsula. The overall results of our study thus suggest the importance of both synoptic and local meteorological factors for high concentration levels in the major and/or big cities in Korea.n Korea.

Characterization of Aerosol Composition, Concentration, and Sources in Bukhansan National Park, Korea (북한산국립공원 내 초미세먼지 농도 및 화학적 특성)

  • Kang, Seokwon;Kang, Taewon;Park, Taehyun;Park, Gyutae;Lee, Junhong;Hong, Je-Woo;Hong, Jinkyu;Lee, Jaehong;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.457-468
    • /
    • 2018
  • To improve understanding of the physico-chemical characteristics of aerosols in the national park and comparing the air pollution between national park and the urban area nearby national park, the aerosol characterization study was conducted in Bukhansan National Park, Seoul, from July through September 2017. Semi-continuous measurements of $PM_{2.5}$ using PILS (Particle Into Liquid System) coupled with IC (Ion Chromatography) and TOC (Total Organic Carbon) analyzer allowed quantification of concentrations of major ionic species($Cl^-$, $SO_4{^{2-}}$, $NO_3{^-}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg{^{2+}}$ and $Ca{^{2+}}$) and water soluble organic carbon (WSOC) with 30-minute time resolution. The total mass concentration of $PM_{2.5}$ was measured by T640 (Teledyne) with 5-minute time resolution. The black carbon (BC) and ozone were measured with a minute time resolution. The timeline of aerosol chemical compositions reveals a strong influence from urban area (Seoul) at the site in Bukhansan National Park. Inorganic aerosol composition was observed to be dominated by ammoniated sulfate at most times with ranging from $0.1{\sim}32.6{\mu}g/m^3$ (6.5~76.1% of total mass of $PM_{2.5}$). The concentration of ammonium nitrate, a potential indicator of the presence of local source, ranged from below detection limits to $20{\mu}g/m^3$ and was observed to be highest during times of maximum local urban (Seoul) impact. The total mass of $PM_{2.5}$ in Bukhansan National Park was observed to be 10~23% lower than the total mass of $PM_{2.5}$ in urban area (Gireum-dong and Bulgwang-dong, Seoul). In general, ozone concentration in Bukhansan National Park was observed to be similar or higher than urban sites in Seoul, suggesting additional biogenic VOCs with $NO_x$ from vehicle emission were to be precursors for ozone formation in Bukhansan National Park.

Spatio-temporal Characteristics of the Frequency of Weather Types and Analysis of the Related Air Quality in Korean Urban Areas over a Recent Decade (2007-2016) (최근 10년간(2007~2016년) 한반도 대도시 일기유형 빈도의 시·공간 특성 및 유형별 대기질 변화 분석)

  • Park, Hyeong-Sik;Song, Sang-Keun;Han, Seung-Beom;Cho, Seongbin
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1129-1140
    • /
    • 2018
  • Temporal and spatial characteristics of the frequency of several weather types and the change in air pollutant concentrations according to these weather types were analyzed over a decade (2007-2016) in seven major cities and a remote area in Korea. This analysis was performed using hourly (or daily) observed data of weather types (e.g., mist, haze, fog, precipitation, dust, and thunder and lighting) and air pollutant criteria ($PM_{10}$, $PM_{2.5}$, $O_3$, $NO_2$, CO, and $SO_2$). Overall, the most frequent weather type across all areas during the study period was found to be mist (39%), followed by precipitation (35%), haze (17%), and the other types (${\leq}4%$). In terms of regional frequency distributions, the highest frequency of haze (26%) was in Seoul (especially during winter and May-June), possibly due to the high population and air pollutant emission sources, while that of precipitation (47%) was in Jeju (summer and winter), due to its geographic location with the sea on four sides and a very high mountain. $PM_{10}$ concentrations for dust and haze were significantly higher in three cities (up to $250{\mu}g/m^3$ for dust in Incheon), whereas those for the other four types were relatively lower. The concentrations of $PM_{2.5}$ and its major precursor gases ($NO_2$ and $SO_2$) were higher (up to $69{\mu}g/m^3$, 48 ppb, and 16 ppb, respectively, for haze in Incheon) for haze and/or dust than for the other weather types. On the other hand, there were no distinct differences in the concentrations of $O_3$ and CO for the weather types. The overall results of this study confirm that the frequency of weather types and the related air quality depend on the geographic and environmental characteristics of the target areas.