• Title/Summary/Keyword: Urban Sensing

Search Result 580, Processing Time 0.027 seconds

Development of Mobile 3D Urban Landscape Authoring and Rendering System

  • Lee Ki-Won;Kim Seung-Yub
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.221-228
    • /
    • 2006
  • In this study, an integrated 3D modeling and rendering system dealing with 3D urban landscape features such as terrain, building, road and user-defined geometric ones was designed and implemented using $OPENGL\;{|}\;ES$ (Embedded System) API for mobile devices of PDA. In this system, the authoring functions are composed of several parts handling urban landscape features: vertex-based geometry modeling, editing and manipulating 3D landscape objects, generating geometrically complex type features with attributes for 3D objects, and texture mapping of complex types using image library. It is a kind of feature-based system, linked with 3D geo-based spatial feature attributes. As for the rendering process, some functions are provided: optimizing of integrated multiple 3D landscape objects, and rendering of texture-mapped 3D landscape objects. By the active-synchronized process among desktop system, OPENGL-based 3D visualization system, and mobile system, it is possible to transfer and disseminate 3D feature models through both systems. In this mobile 3D urban processing system, the main graphical user interface and core components is implemented under EVC 4.0 MFC and tested at PDA running on windows mobile and Pocket Pc. It is expected that the mobile 3D geo-spatial information systems supporting registration, modeling, and rendering functions can be effectively utilized for real time 3D urban planning and 3D mobile mapping on the site.

Detection of Individual Trees in Human Settlement Using Airborne LiDAR Data and Deep Learning-Based Urban Green Space Map (항공 라이다와 딥러닝 기반 도시 수목 면적 지도를 이용한 개별 도시 수목 탐지)

  • Yeonsu Lee ;Bokyung Son ;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1145-1153
    • /
    • 2023
  • Urban trees play an important role in absorbing carbon dioxide from the atmosphere, improving air quality, mitigating the urban heat island effect, and providing ecosystem services. To effectively manage and conserve urban trees, accurate spatial information on their location, condition, species, and population is needed. In this study, we propose an algorithm that uses a high-resolution urban tree cover map constructed from deep learning approach to separate trees from the urban land surface and accurately detect tree locations through local maximum filtering. Instead of using a uniform filter size, we improved the tree detection performance by selecting the appropriate filter size according to the tree height in consideration of various urban growth environments. The research output, the location and height of individual trees in human settlement over Suwon, will serve as a basis for sustainable management of urban ecosystems and carbon reduction measures.

Monitoring and spatio-temporal analysis of UHI effect for Mansa district of Punjab, India

  • Kaur, Rajveer;Pandey, Puneeta
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.19-39
    • /
    • 2020
  • Urban heat island (UHI) is one of the most important climatic implications of urbanization and thus a matter of key concern for environmentalists of the world in the twenty-first century. The relationship between climate and urbanization has been better understood with the introduction of thermal remote sensing. So, this study is an attempt to understand the influence of urbanization on local temperature for a small developing city. The study focuses on the investigation of intensity of atmospheric and surface urban heat island for a small urbanizing district of Punjab, India. Landsat 8 OLI/TIRS satellite data and field observations were used to examine the spatial pattern of surface and atmospheric UHI effect respectively, for the month of April, 2018. The satellite data has been used to cover the larger geographical area while field observations were taken for simultaneous and daily temperature measurements for different land use types. The significant influence of land use/land cover (LULC) patterns on UHI effect was analyzed using normalized built-up and vegetation indices (NDBI, NDVI) that were derived from remote sensing satellite data. The statistical analysis carried out for land surface temperature (LST) and LULC indicators displayed negative correlation for LST and NDVI while NDBI and LST exhibited positive correlation depicting attenuation in UHI effect by abundant vegetation. The comparison of remote sensing and in-situ observations were also carried out in the study. The research concluded in finding both nocturnal and daytime UHI effect based on diurnal air temperature observations. The study recommends the urgent need to explore and impose effective UHI mitigation measures for the sustainable urban growth.

Broad and stage-based sensing function of HCFRP sensors

  • Wu, Z.S.;Yang, C.Q.
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.133-146
    • /
    • 2007
  • This paper addresses a new type of broad and stage-based hybrid carbon fiber reinforced polymer (HCFRP) sensor that is suitable for the sensing of infrastructures. The HCFRP sensors, a type of composite sensor, are fabricated with three types of carbon tows of different strength and moduli. For all of the specimens, the active materials are carbon tows by virtue of their electrical conductivity and piezoresistivity. The measurement principles are based on the micro- and macro-fractures of different types of carbon tows. A series of experiments are carried out to investigate the sensing performances of the HCFRP sensors. The main variables include the stack order and volume fractions of different types of carbon tows. It is shown that the change in electrical resistance is in direct proportion to the strain/load in low strain ranges. However, the fractional change in electrical resistance (${\Delta}R/R_0$) is smaller than 2% prior to the macrofractures of carbon tows. In order to improve the resistance changes, measures are taken that can enhance the values of ${\Delta}R/R_0$ by more than 2 times during low strain ranges. In high strain ranges, the electrical resistance changes markedly with strain/load in a step-wise manner due to the gradual ruptures of different types of carbon tows at different strain amplitudes. The values of ${\Delta}R/R_0$ due to the fracture of high modulus carbon tows are larger than 36%. Thus, it is demonstrated that the HCFRP sensors have a broad and stage-based sensing capability.

URBAN ENVIRONMENTAL QUALITY ANALYSIS USING LANDSAT IMAGES OVER SEOUL, KOREA

  • Lee, Kwon-H.;Wong, Man-Sing;Kim, Gwan-C.;Kim, Young-J.;Nichol, Janet
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.556-559
    • /
    • 2007
  • The Urban Environmental Quality (UEQ) indicates a complex and various parameters resulting from both human and natural factors in an urban area. Vegetation, climate, air quality, and the urban infrastructure may interact to produce effects in an urban area. There are relationships among air pollution, vegetation, and degrading environmental the urban heat island (UHI) effect. This study investigates the application of multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air quality and UHI intensity in Seoul from 2000 to 2006 in fine resolution (30m) using the emissivity-fusion method. The Haze Optimized Transform (HOT) correction approach has been adopted for atmospheric correction on all bands except thermal band. The general UHI values (${\Delta}(T_{urban}-T_{rural})$) are 8.45 (2000), 9.14 (2001), 8.61 (2002), and $8.41^{\circ}C$ (2006), respectively. Although the UHI values are similar during these years, the spatial coverage of "hot" surface temperature (>$24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84(2002), and 0.89 (2006), respectively. Air quality is shown to be an important factor in the spatial variation of UEQ. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

  • PDF

Remote Sensing To Study Urban Heat Island Effects in Bangkok Metropolitan Region

  • Hung, TRAN;YASUOKA, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.741-743
    • /
    • 2003
  • This study focuses on monitoring the surface UHI in a tropical city of Bangkok in both spatial and temporal dimensions based on MODIS- and TM -derived land surface temperature (LST). The spatial extension and magnitude of the surface UHI are explored for days and nights as well as its variations through the dry (least-clouded) season. Surface UHI growth between 1993 and 2002 is mapped using highresolution LANDSAT TM thermal bands. UHI patterns are, then, analyzed in association with land/vegetation covers derived from high-resolution ETM+ and ASTER satellites and ancillary data.

  • PDF

Forest Fire Monitoring System Using Remote Sensing Data

  • Hwangbo, Ju-Won;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.747-749
    • /
    • 2003
  • For forest fire monitoring in relatively cool area like Siberia, design of Decision Support System (DSS) is proposed. The DSS is consisted of three different algorithms to detect potential fires from NOAA AVHRR image. The algorithm developed by CCRS (Canada Center for Remote Sensing) uses fixed thresholds for multi-channel information like one by ESA (European Space Agency). The algorithm of IGBP (International Geosphere Biosphere Program) involves contextual information in deriving fire pixels. CCRS and IGBP algorithms are rather liberal compared to more conservative ESA algorithm. Fire pixel information from the three algorithms is presented to the user. The user considers all these information in making decision about the location fire takes place.

  • PDF

Land Use Analysis of Road Circumstance using Remote Sensing and GIS (RS와 GIS를 이용한 도로주변의 토지이용분석)

  • Choi, Seok-Keun;Hwang, Eui-Jin;Park, Kyeong-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.133-140
    • /
    • 2007
  • In this study we did the monitor the change of a urban land coverage to forecast and to deal with various city problems according to urban development. The amount of change of a land coverage used the landsat satellite image and was calculated by analyzing the situation and the distribution aspect of land cover of the road circumstance by time series. We interpreted two images which are taken picture different time and calculated the amount of the area change through integration of the spatial analysis technique of remote sensing and GIS for this study. We could create the development model of the urban area by continuous analysis of satellite and geographic data.

Sustainable Fresh Water Resources Management in Northern Kuwait-A Remote Sensing View From Raudatain Basin

  • Saif ud din;Dousari Ahmad AI;Ghadban Abdulnabi AI
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.153-164
    • /
    • 2005
  • The paper presents time and cost effective remote sensing technology to estimate recharge potential of fresh water shallow aquifers for their sustainable management in arid ecosystem. Precipitation measurement of Raudatain Basin in Kuwait from TRMM data has been made and integrated with geological, geomorphological and hyrological data, to estimate the recharge potential of the basin. The total potential recharge to the area is estimated as 333.964 MCM annually. The initial losses are estimated at $60\%$ of the net precipitation .The net available quantity for recharge is 133.58 MCM. For sustainable management of the ground water resources, recharge wells have been proposed in the higher order streams to augment the Raudatain aquifer in Kuwait. If the available quantity of precipitation can be successfully utilized, it will reduce considerable pressure on desalination, which is leading to increased salinity off the coast in Arabian Gulf.

  • PDF

Texture Image Fusion on Wavelet Scheme with Space Borne High Resolution Imagery: An Experimental Study

  • Yoo, Hee-Young;Lee , Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • Wavelet transform and its inverse processing provide the effective framework for data fusion. The purpose of this study is to investigate applicability of wavelet transform using texture images for the urban remote sensing application. We tried several experiments regarding image fusion by wavelet transform and texture imaging using high resolution images such as IKONOS and KOMPSAT EOC. As for texture images, we used homogeneity and ASM (Angular Second Moment) images according that these two types of texture images reveal detailed information of complex features of urban environment well. To find out the useful combination scheme for further applications, we performed DWT(Discrete Wavelet Transform) and IDWT(Inverse Discrete Wavelet Transform) using texture images and original images, with adding edge information on the fused images to display texture-wavelet information within edge boundaries. The edge images were obtained by the LoG (Laplacian of Gaussian) processing of original image. As the qualitative result by the visual interpretation of these experiments, the resultant image by each fusion scheme will be utilized to extract unique details of surface characterization on urban features around edge boundaries.