• Title/Summary/Keyword: Urban Hydrology

Search Result 58, Processing Time 0.024 seconds

L-THIA/NPS to Assess the Impacts of Urbanization on Estimated Runoff and NPS Pollution (도시화에 따른 유출과 비점원 오염 영향을 평가하기 위한 L-THIA/NPS)

  • Kyoung-Jae Lim;Bernard A. Engel;Young-Sug Kim;Joong-Dae Choi;Ki-Sung Kim
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.78-88
    • /
    • 2003
  • The land use changes from non-urban areas to urban areas lead to the increased impervious areas, consequently increased direct runoff and higher peak runoff. Urban areas have also been recognized as significant sources of Nonpoint Source (NPS) pollution, while agricultural activities have been known as the primary sources of NPS pollution. Many features of the L-THIA/NPS GIS, L-THIA/NPS WWW system have been enhanced to provide easy-to-use system. The L-THIA model was applied to the Little Eagle Creek (LEC) watershed in Indiana to evaluate the accuracy of the model. The L-THIA/NPS GIS estimated yearly direct runoff values match the direct runoff separated from U.S. Geological Survey stream flow data reasonably. The $R^2$ and Nash-Sutcliffe values are 0.67 and 0.60, respectively. The L-THIA estimated runoff volume and total nitrogen loading for each land use classification in the LEC watershed were computed. The estimated runoff volume and total nitrogen loading in the LEC watershed increased by 180% and 270% for the 20 years. Urbanized areas -"Commercial", "High Density Residential", and "Low Density Residential"- of the LEC watershed made up around 68% of the 1991 total land areas, however contributed more than 92% of average annual runoff and 86% of total nitrogen loading. Therefore, it is essential to consider the impacts of land use change on hydrology and water quality in land use planning of urbanizing watershed.nning of urbanizing watershed.

Estimation of High-Resolution Soil Moisture based on Sentinel-1A/B SAR Sensors (Sentinel-1A/B SAR 센서 기반 고해상도 토양수분 산정)

  • Kim, Sangwoo;Lee, Taehwa;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.89-99
    • /
    • 2019
  • In this study, we estimated the spatially-distributed soil moisture at the high resolution ($10m{\times}10m$) using the satellite-based Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images. The Sentinel-1A/B raw data were pre-processed using the SNAP (Sentinel Application Platform) tool provided from ESA (European Space Agency), and then the pre-processed data were converted to the backscatter coefficients. The regression equations were derived based on the relationships between the TDR (Time Domain Reflectometry)-based soil moisture measurements and the converted backscatter coefficients. The TDR measurements from the 51 RDA (Rural Development Administration) monitoring sites were used to derive the regression equations. Then, the soil moisture values were estimated using the derived regression equations with the input data of Sentinel-1A/B based backscatter coefficients. Overall, the soil moisture estimates showed the linear trends compared to the TDR measurements with the high Pearson's correlations (more than 0.7). The Sentinel-1A/B based soil moisture values matched well with the TDR measurements with various land surface conditions (bare soil, crop, forest, and urban), especially for bare soil (R: 0.885~0.910 and RMSE: 3.162~4.609). However, the Mandae-ri (forest) and Taean-eup (urban) sites showed the negative correlations with the TDR measurements. These uncertainties might be due to limitations of soil surface penetration depths of SAR sensors and complicated land surface conditions (artificial constructions near the TDR site) at urban regions. These results may infer that qualities of Sentinel-1A/B based soil moisture products are dependent on land surface conditions. Although uncertainties exist, the Sentinel-1A/B based high-resolution soil moisture products could be useful in various areas (hydrology, agriculture, drought, flood, wild fire, etc.).

Landuse oriented Water Balance Analysis Method by the Hydrological Model BAGLUVA based on Soil and Vegetation (토양-식생기반의 수문모델 BAGLUVA를 적용한 토지이용별 물수지 분석 방법론)

  • Kwon, Kyung Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.98-111
    • /
    • 2015
  • Urban environmental problems such as flooding, depletion of ground water, pollution of urban streams and the heat island effect caused by urban development and climate change can be mitigated by the improvement of the urban water cycle. For the effective planning of water cycle management it is necessary to establish aerial Hydrotope Maps, with which we can estimate the status and change of the water allowance for any site. The structure of the German water balance model BAGLUVA, which is based on soil and vegetation, was analyzed and the input data and boundary condition of the model was compared with Korean data and research results. The BAGLUVA Model consists of 5 Input categories (climate, land use, topography, soil hydrology and irrigation). The structure and interconnection of these categories are analyzed and new concepts and implementation methods of topographic factor, maximum evapotranspiration ratio, effective rooting depth and Bagrov n parameter was compared and analyzed. The relation of real evapotranspiration ($ET_a$)-maximum evapotranspiration ($ET_{max}$) - precipitation (P) was via Bagrov n factor represented. The aerial and land use oriented Hydrotope Map can help us to investigate the water balance of small catchment areas and to set goals for volume of rainwater management and LID facilities effectively in the city. Further, this map is a useful tool for implementing water resource management within landscape and urban planning.

A Review on Environmental Restoration of the Waste Landfills (쓰레기매립지의 환경복원)

  • Kim, Kee Dae;Lee, Eun Ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.6
    • /
    • pp.56-71
    • /
    • 2003
  • Waste landfills have been the center of environmental problems and they must be restored due to environmental pollution, disgusting landscape, and cost of management. It is suggested that they be recycled urban space as cities expand. Specially, nonsanitary waste landfills which have no pollution prevention facilities cause serious problems. Restoring the landfills as parks and golf courses, so on makes more benefits because of cheap use land, closeness to urban area, flat topography applicable to parks and golf courses, and high land values after restoration and the changes to local recreation sites. Restoration of waste landfills is a complex, costly, and interdisciplinary work. But, the waste landfill is a manmade ecosystem. Control, restoration and postmanagement of waste landfills are very important problems. The role of vegetation prevents soil erosion, reduces soil water storage, and obstructs leachate seepage. Early restoration makes derelict lands into man park artificially geared to soil, vegetation, landforms and hydrology. But, Ideal restoration is to make stable ecosystem nature-friendly and compatible with surrounding landscape without more management. Landscape is structured hierarchically with patches and stands as small components and forms forest as large components. Therefore, landscape formation of the waste landfills needs much restoration process. There are many ecological restoration techniques for the waste landfills. Those are divided into artificial and natural methods. The artificial method is anthropogenic plantings while the natural method is to trigger and use succession processes. The most important thing in the restoration of waste landfills is to consider the final restoration objectives of each waste landfill. According to these objectives, the depth of covering layer, planting degree, and structural design should be determined. The effective restoration methods should be selected of artificial and natural options.

Backward estimation of precipitation from high spatial resolution SAR Sentinel-1 soil moisture: a case study for central South Korea

  • Nguyen, Hoang Hai;Han, Byungjoo;Oh, Yeontaek;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.329-329
    • /
    • 2022
  • Accurate characterization of terrestrial precipitation variation from high spatial resolution satellite sensors is beneficial for urban hydrology and microscale agriculture modeling, as well as natural disasters (e.g., urban flooding) early warning. However, the widely-used top-down approach for precipitation retrieval from microwave satellites is limited in several hydrological and agricultural applications due to their coarse spatial resolution. In this research, we aim to apply a novel bottom-up method, the parameterized SM2RAIN, where precipitation can be estimated from soil moisture signals based on an inversion of water balance model, to generate high spatial resolution terrestrial precipitation estimates at 0.01º grid (roughly 1-km) from the C-band SAR Sentinel-1. This product was then tested against a common reanalysis-based precipitation data and a domestic rain gauge network from the Korean Meteorological Administration (KMA) over central South Korea, since a clear difference between climatic types (coasts and mainlands) and land covers (croplands and mixed forests) was reported in this area. The results showed that seasonal precipitation variability strongly affected the SM2RAIN performances, and the product derived from separated parameters (rainy and non-rainy seasons) outperformed that estimated considering the entire year. In addition, the product retrieved over the mainland mixed forest region showed slightly superior performance compared to that over the coastal cropland region, suggesting that the 6-day time resolution of S1 data is suitable for capturing the stable precipitation pattern in mainland mixed forests rather than the highly variable precipitation pattern in coastal croplands. Future studies suggest comparing this product to the traditional top-down products, as well as evaluating their integration for enhancing high spatial resolution precipitation over entire South Korea.

  • PDF

Impacts of Impevious Cove Change on Pollutant Loads from the Daejeon-Stream Watershed Using AnnAGNPS (논문 - AnnAGNPS를 이용한 대전천 유역의 불투수면 변화에 따른 배출부하량 평가)

  • Chang, Seung-Woo;Kang, Moon-Seong;Song, In-Hong;Chung, Se-Woong
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.3-14
    • /
    • 2011
  • Increased impervious surfaces alter stream hydrology resulting in lower flows during droughts and higher peak flows during floods. Not only urban area but also rural area has been expanded impervious surfaces because of increasing of greenhouses. The main objective of this study was to evaluate the performance of the AnnAGNPS (Annualized Non-Point Source Pollution Model) on the surface runoff characteristics of the Daejeon-Stream watershed, and to predict the hydrological effects due to increasing of impervious surfaces. The model parameters were obtained from the geographical information system (GIS) databases, and additional parameters calibrated with the observed data. The model was calibrated by using 2004 of the runoff data and validated by using 2002 data obtained from WAMIS (Water Management Information System) to compare the simulated results for the study watershed. R2 values and efficiency index (EI) between observed and simulated runoff were 0.78 and 0.80, respectively at the calibration period. In this study, expanding of impervious surfaces such as greenhouses caused increasing of surface runoff, but caused decreasing of total nitrogen and total phosphorus loads.

  • PDF

Factors affecting the infiltration rate and removal of suspended solids in gravel-filled stormwater management structures

  • Guerra, Heidi B.;Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Apparent changes in the natural hydrologic cycle causing more frequent floods in urban areas and surface water quality impairment have led stormwater management solutions towards the use of green and sustainable practices that aims to replicate pre-urbanization hydrology. Among the widely documented applications are infiltration techniques that temporarily store rainfall runoff while promoting evapotranspiration, groundwater recharge through infiltration, and diffuse pollutant reduction. In this study, a laboratory-scale infiltration device was built to be able to observe and determine the factors affecting flow variations and corresponding solids removal through a series of experiments employing semi-synthetic stormwater runoff. Results reveal that runoff and solids reduction is greatly influenced by the infiltration capability of the underlying soil which is also affected by rainfall intensity and the available depth for water storage. For gravel-filled structures, a depth of at least 1 m and subsoil infiltration rates of not more than 200 mm/h are suggested for optimum volume reduction and pollutant removal. Moreover, it was found that the length of the structure is more critical than the depth for applications in low infiltration soils. These findings provide a contribution to existing guidelines and current understanding in design and applicability of infiltration systems.

Runoff Analysis for Urban Unit Subbasin Based on its Shape (유역형상을 고려한 도시 단위 소유역의 유출 해석)

  • Hur, Sung-Chul;Park, Sang-Sik;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • In order to describe runoff characteristics of urban drainage area, outflow from subbasins divided by considering topography and flow path, is analyzed through stormwater system. In doing so, concentration time and time-area curve change significantly according to basin shape, and runoff characteristics are changed greatly by these attributes. Therefore, in this development study of FFC2Q model by MLTM, we aim to improve the accuracy in analyzing runoff by adding a module that considers basin shape, giving it an advantage over popular urban hydrology models, such as SWMM and ILLUDAS, that can not account for geometric shape of a basin due to their assumptions of unit subbasin as having a simple rectangular form. For subbasin shapes, symmetry types (rectangular, ellipse, lozenge), divergent types (triangle, trapezoid), and convergent types (inverted triangle, inverted trapezoid) have been analyzed in application of time-area curve for surface runoff analysis. As a result, we found that runoff characteristic can be quite different depending on basin shape. For example, when Gunja basin was represented by lozenge shape, the best results for peak flow discharge and overall shape of runoff hydrograph were achieved in comparison to observed data. Additionally, in case of considering subbasin shape, the number of division of drainage basin did not affect peak flow magnitude and gave stable results close to observed data. However, in case of representing the shape of subbasins by traditional rectangular approximation, the division number had sensitive effects on the analysis results.

Environmental Isotope-Aided Studies on River Water and Ground Water Interaction in the Region of Seoul Part I: Isotope Hydrology of the Shallow Alluvial Aquifer Han R. Valley (동위원소를 이용한 서울 지역의 강수와 지하수와의 상호연관성에 관한 연구 제 1 보 : 동위원소를 이용한 한강류역 충적대수층 지하수의 수문학적 연구)

  • Jong Sung Ahn;Jae Sung Kim;You Sun Kim;Peter Airey;Bryan Payne
    • Nuclear Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.85-96
    • /
    • 1981
  • A preliminary study of the isotope hydrology of the Han River Valley is presented. This investigation is part of a project whose overall aim is to relate the levels of heavy metal ions to the dynamics of the groundwater movement in order to establish (i) whether there is any evidence for the deterioration in groundwater quality associated with the release of industrial effluents and (ii) if so, to determine the migration path-ways. Evidence is adduced that the recharge mechanism is principally determined by the degree of urbanisation. In the metropolitan area of Seoul, river recharge dominates probably due to the combined effects of reduced infiltration and increased pumpage. In the inter-urban region, the major source of recharge is local precipitation. During the spring sampling period when the river levels were low. evidence was obtained for appreciable groundwater infiltration in the vicinity of the upstream transect. No significant correlations were observed between the levels of heavy metals in the groundwater, and the recharge mechanism, the distance from the river or the electrical conductivity of the samples.

  • PDF

Development of a Verification and Certification Method of Green Infrastructure and Low Impact Development Technologies (그린인프라 및 저영향개발 기술의 검증 및 인증 기법 개발)

  • Shin, Hyun Suk;Park, Jong Bin;Lee, Jae Hyuk
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 2016
  • This study developed a verification and certification method of technologies of green infrastructure (GI) and low impact development (LID) that gained interest recently. The outdoor testbed used in this study consisted of a building type, a road type, a parking lot type, a rain garden type and a bioretention type. Indoor test facilities were ready for testing using hydrology efficient analysis, pavement and soil analysis and water environment analysis. The development of outdoor and indoor test facilities were used to certify the efficiency of GI & LID technologies, and this was expected to contribute to the activation of the related projects by providing reliable data for the application of GI & LID techniques.