• Title/Summary/Keyword: Urban Higher Temperature

Search Result 232, Processing Time 0.02 seconds

Gasification of Woody Waste in a Two-Stage Fluidized Bed Varying the Upper-reactor Temperature and Equivalence Ratio (상부온도(上部溫度)와 공기비(空氣比) 변화(變化)에 따른 폐목재(廢木材)의 이단(二段) 유동층(流動層)가스화(化))

  • Mun, Tae-Young;Kim, Jin-O;Kim, Jin-Won;Kim, Joo-Sik
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.45-53
    • /
    • 2010
  • During the biomass gasification, tar generation is typically accompanied, which causes many problems, such as pipe plugging and equipment fouling. In the experiments, activated carbon was applied to the upper reactor of the two-stage gasifier in order to remove the tar generated during gasification. In addition, the effects of the upper-reactor temperature and equivalence ratio on the producer gas characteristics (composition, tar content and lower heating value) were investigated. To investigate the effect of the upper reactor-temperature, experiments were performed at 743, 793, $838^{\circ}C$, respectively. To examine the influence of the equivalence ratio, a comparison experiment was carried out at a equivalence ratio of 0.17. In all experiments, tar contents in the producer gases were below $2mg/Nm^3$. The maximum LHV of the producer gas was above $10MJ/Nm^3$, which is much higher than the typical LHV($3\sim6MJ/Nm^3$) in the air gasification of biomass.

An Empirical Study on Analysis Method of Impervious Surface Using IKONOS Image (IKONOS 위성영상을 이용한 불투수지표면 분석방법에 관한 실증연구)

  • 사공호상
    • Spatial Information Research
    • /
    • v.11 no.4
    • /
    • pp.509-518
    • /
    • 2003
  • Impervious surface affects urban climate, flood, and water pollution. With a higher paved rate, expanded heat containing capacity of buildings and roads raises atmospheric temperature, and increased quantity of the outflowed water brings flood during a heavy downpour. Moreover, increased non-point source pollutant load is accountable for water pollution. In this regard, it is definitely important to research and keep monitoring the current situation of paved surface, which influences urban ecosystem, disaster and pollution. In fact, collecting information on urban paved surface, which requires the time and expense, is very difficult due to its complicate structure. In order to solve the problem, this study suggested a method to utilize satellite image data for efficient survey on the current condition of paved surface. It analyzed the paved surface condition of Anyang-si by using IKONOS image and discussed the usefulness and limitation of this method.

  • PDF

Changes in nocturnal insect communities in forest-dominated landscape relevant to artificial light intensity

  • Lee, Hakbong;Cho, Yong-Chan;Jung, Sang-Woo;Kim, Yoon-Ho;Lee, Seung-Gyu
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.218-227
    • /
    • 2021
  • Background: Artificial light at night has recently been identified as a major factor adversely affecting global insect diversity. Here, we compared the insect diversity in Gwangneung Forest Biosphere Reserve, specifically in the Korea National Arboretum (with no artificial light at night), with that of three nearby urban sites with a gradient of artificial light at night (five locations at each site). We analyzed the effects of the artificial night lighting index, mean annual temperature, and field light intensity (lux) at night on the insect community structure. Results: The urban sites generally exhibited higher species richness and abundance as well as clear indicator species compared with the control site. The size distribution of the collected insects markedly differed between the control and the three urban sites. The abundance of herbivorous and omnivorous insects increased and decreased, respectively, with the increase in light intensity. Species richness of herbivorous and omnivorous insects was likely correlated with the field light intensity at night and artificial night lighting index, respectively. Conclusions: This study demonstrates the association between nighttime environment and marked changes in insect community structure and revealed consequent transition of ecosystem services by changes in trophic group composition.

Validation of ENVI-met Model with In Situ Measurements Considering Spatial Characteristics of Land Use Types (토지이용 유형별 공간특성을 고려한 ENVI-met 모델의 현장측정자료 기반의 검증)

  • Song, Bong-Geun;Park, Kyung-Hun;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.156-172
    • /
    • 2014
  • This research measures and compares on-site net radiation energy, air temperature, wind speed, and surface temperature considering various spatial characteristics with a focus on land use types in urban areas in Changwon, Southern Gyeongsangnam-do, to analyze the accuracy of an ENVI-met model, which is an analysis program of microclimate. The on-site measurement was performed for three days in a mobile measurement: two days during the daytime and one day during the nighttime. The analysis using the ENVI-met model was also performed in the same time zone as the on-site measurement. The results indicated that the ENVI-met model showed higher net radiation than the on-site measurement by approximately $300Wm^{-2}$ during the daytime whereas the latter showed higher net radiation energy by approximately $200Wm^{-2}$ during the nighttime. The temperature was found to be much higher by approximately $2-6^{\circ}C$ in the on-site measurement during both the daytime and nighttime. The on-site measurement also showed higher surface temperature than the ENVI-met by approximately $7-13^{\circ}C$. In terms of the wind speed, there was a significant difference between the results of the ENVI-met model and on-site measurement. As for the correlation between the results of the ENVI-met model and on-site measurement, the temperature showed significantly high correlation whereas the correlations for the net radiation energy, surface temperature, and wind speed were very low. These results appear to be affected by excessive or under estimation of solar and terrestrial radiation and climatic conditions of the surrounding areas and characteristics of land cover. Hence, these factors should be considered when applying these findings in urban and environment planning for improving the microclimate in urban areas.

Variation Profiles of Temperature by Green Area of Apartments in Gangnam, Seoul (서울 강남지역 아파트단지의 녹지면적에 따른 온도변화 모형)

  • 홍석환;이경재
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • This study was carried out to investigate the effect of green area in apartment complexes to variation of temperature. The inside temperature of each site was estimated by analyzing Landsat ETM+ image data. The factors on variation of temperature were landcover type, building density, and Normalised Difference Vegetation Index(NDVI). The results of correlation between inside temperature of apartment complex and land cover type showed that the green area ratio had negative(-) correlation and impermeable pavement ratio had positive(+) correlation. Building-to-land ratio was not significant with inside temperature. A coefficient of correlation between the temperature value and the value of permeable pavement ratio added up green area ratio was higher than a coefficient of correlation between the temperature value and the value of permeable pavement ratio added up impermeable pavement ratio. Thus we may define that permeable pavement area decrease urban temperature with green area in apartment complex. Floor area ratio had no significant correlation with inside temperature. Inside temperature was decreased as the NDVI was increased. To establish the temperature distribution model in a development apartment complex, As the result of regression analysis between inside temperature as dependent variable and permeable pave ratio+green area ratio, green area ratio, building-to-land ratio and NDIT as independent variables, only permeable pavement ratio added up green area ratio of the independent variables was accepted fur regression equation in both two seasons and adjusted coefficient of determination was 41.4 on September, 2000 and 40.4 on June,2001.

Spatial Distribution of Urban Heat and Pollution Islands using Remote Sensing and Private Automated Meteorological Observation System Data -Focused on Busan Metropolitan City, Korea- (위성영상과 민간자동관측시스템 자료를 활용한 도시열섬과 도시오염섬의 공간 분포 특성 - 부산광역시를 대상으로 -)

  • HWANG, Hee-Soo;KANG, Jung Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.100-119
    • /
    • 2020
  • During recent years, the heat environment and particulate matter (PM10) have become serious environmental problems, as increases in heat waves due to rising global temperature interact with weakening atmospheric wind speeds. There exist urban heat islands and urban pollution islands with higher temperatures and air pollution concentrations than other areas. However, few studies have examined these issues together because of a lack of micro-scale data, which can be constructed from spatial data. Today, with the help of satellite images and big data collected by private telecommunication companies, detailed spatial distribution analyses are possible. Therefore, this study aimed to examine the spatial distribution patterns of urban heat islands and urban pollution islands within Busan Metropolitan City and to compare the distributions of the two phenomena. In this study, the land surface temperature of Landsat 8 satellite images, air temperature and particulate matter concentration data derived from a private automated meteorological observation system were gridded in 30m × 30m units, and spatial analysis was performed. Analysis showed that simultaneous zones of urban heat islands and urban pollution islands included some vulnerable residential areas and industrial areas. The political migration areas such as Seo-dong and Bansong-dong, representative vulnerable residential areas in Busan, were included in the co-occurring areas. The areas have a high density of buildings and poor ventilation, most of whose residents are vulnerable to heat waves and air pollution; thus, these areas must be considered first when establishing related policies. In the industrial areas included in the co-occurring areas, concrete or asphalt concrete-based impervious surfaces accounted for an absolute majority, and not only was the proportion of vegetation insufficient, there was also considerable vehicular traffic. A hot-spot analysis examining the reliability of the analysis confirmed that more than 99.96% of the regions corresponded to hot-spot areas at a 99% confidence level.

Classification of Local Climate Zone by Using WUDAPT Protocol - A Case Study of Seoul, Korea - (WUDAPT Protocol을 활용한 Local Climate Zone 분류 - 서울특별시를 사례로 -)

  • Kim, Kwon;Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.131-142
    • /
    • 2017
  • This study aims to create a Local Climate Zone(LCZ) map of Seoul by using World Urban Database and Access Portal Tools(WUDAPT) protocol, and to analyze the characteristics of the Seoul LCZs. For this purpose, training samples of 17 LCZ types were collected by using Landsat images and Google Earth. LCZ Classification and Filtering were performed by SAGA GIS. An ArcGIS was used to analyze the characteristics of each LCZ type. The characteristics of the LCZ types were analyzed by focusing on building surface fraction ratio, impervious surface fraction ratio, pervious surface fraction ratio, building stories and air temperature. The results show that one filtering was found to be most appropriate. While Yangcheongu and Yeongdeungpogu with the higher annual and maximum mean air temperature than other areas have the higher rate of LCZ 3(compact low-rise) and LCZ 4(open high-rise), Jongnogu, Eunpyeonggu, Nowongu and Gwanakgu with the lower value have the higher rate of LCZ A(Dence trees). The values of building surface fraction ratio, impervious surface fraction ratio and building stories of each LCZ were included in the range of WUDAPT for most LCZs. However, the values of pervious surface fraction ratio were out of the range, in particular, in the LCZs 4~6 and 9~10. This study shows the usability and applicability of the WUDAPT methodology and its climate zone classification used in many countries as a basic data for the landscape planning and policy to improve the thermal environment in urban areas.

Landscape Planning and Design Methods with Human Thermal Sensation (인간 열환경 지수(HumanThermal Sensation)를 이용한 조경계획 및 디자인 방법)

  • Park, Soo-Kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Human thermal sensation based on a human energy balance model was analyzed in the study areas, the Changwon and Nanaimo sites, on clear days during thesummer of 2009. The climatic input data were air temperature, relative humidity, wind speed and solar and terrestrial radiation. The most effective factors for human thermal sensation were direct beam solar radiation, building view factor and wind speed. Shaded locations had much lower thermal sensation, slightly warm, than sunny locations, very hot. Also, narrow streets in the Nanaimo site had higher thermal sensation than open spaces because of greater reflected solar radiation and terrestrial radiation from their surrounding buildings. Calm wind speed also produced much higher thermal sensation, which reduced sensible and latent heat loss from the human body. By adopting climatic factors into landscape architecture, the human thermal sensation analysis method promises to help create thermally comfortable outdoor areas. The method can also be used for urban heat island modification and climate change studies.

A Way for Creating Human Bioclimatic Maps using Human Thermal Sensation (Comfort) and Applying the Maps to Urban and Landscape Planning and Design (인간 열환경 지수를 이용한 생기후지도 작성 및 도시·조경계획 및 디자인에의 적용방안)

  • Park, Soo-Kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.21-33
    • /
    • 2013
  • The purpose of this study is to find applicabilities of human bioclimatic maps, using human thermal sensation(comfort) in summer, with microclimatic in situ data and computer simulation results at the study site of downtown Daegu. This includes the central business district(CBD) area and two urban parks, the Debt Redemption Movement Memorial Park and the 2.28 Park, for urban and landscape planning and design. Climatic data and urban setting information for the analysis of human thermal sensation were obtained from in situ measurement and the geographic information system data. As a result, the CBD had higher air temperature than the parks when the wind speed was low. Relative humidities were opposite to the air temperature. Especially, same directional streets with local wind direction had lower air temperature than streets perpendicular to the wind direction. The most important climatic variable of human thermal sensation in summer was direct beam solar radiation. Also, creating shadow areas would be the most relevant method for modifying hot thermal environments in urban areas. The most effective method of creating shadow patterns was making a tree shadow over a pergola, and the second best one was making a tree shadow on the front of north directional building walls. Moreover, how to plant trees for creating shadow patterns was important as well as what kind of trees should be planted. The results of human thermal sensation were warm to very hot at sunny areas and neutral to warm at shaded ones. At the sunny areas, wide, squared shape areas had a little bit higher thermal sensation than those of narrow streets. The albedo change of building walls 0.15 and ground surface 0.1 could change 1/6 of a sensation level at the shaded areas and 1/3 at the sunny ones. These microclimatic approaches will be useful to find appropriate methods for modifying thermal environments in urban areas.

Temperature Lowering Effects Varied by the Arrangement and Types of Vegetation (녹지의 배치와 식재형태가 열환경저감효과에 미치는 영향)

  • 윤용한
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.4
    • /
    • pp.165-172
    • /
    • 2003
  • Temperature lowering effects varied by the arrangement and types of vegetation The effects of the arrangement and types of vegetation on lowering temperature have shown following results. 1) The temperature range of a vegetation shows that a higher temperature was recorded near urban towns while lower temperature was observed around the vegetation area and small streams. 2) The relationship between the arrangement of a vegetation and the temperature indicates that the lower temperature area matches with each vegetation area. Streets between vegetations and the lower end of the wind area have also lower temperature. 3) The relationship between inter-vegetationstreets and the temperature indicates that the lower temperature area has been observed not only at the streets of the lower end of the wind but at the streets in-between streets as well. Even when there's no vegetation area from which the wind blows, inter-vegetation streets showed the lower temperature. 4) With land coverage ratio and the temperature, the increase of planted areas, grass areas, and water level have positive effects on lowering the temperature while bare areas increase it. 5) From arbor to sub-arbor, the increase of trees has a significant effect on lowering the temperature of nearby area.