• 제목/요약/키워드: Urban Heat intensity

검색결과 64건 처리시간 0.023초

통합모델을 활용한 이류와 도시비율이 서울 수도권 지역의 도시열섬강도에 미치는 영향 분석 (Analysis of the Effects of Advection and Urban Fraction on Urban Heat Island Intensity using Unified Model for Seoul Metropolitan Area, Korea)

  • 홍선옥;김도형;변재영;박향숙;하종철
    • 대기
    • /
    • 제29권4호
    • /
    • pp.381-390
    • /
    • 2019
  • This study investigates the impacts of urban land-use fraction and temperature advection on the urban heat island intensity over the Seoul metropolitan area using the UM (Unified Model) with the MORUSES (Met Office Reading Urban Surface Exchange Scheme) during the heat wave over the region from 2 to 8, August 2016. Two simulations are performed with two different land-use type, the urban (urban simulation) and the urban surfaces replaced with grass (rural simulation), in order to calculate the urban heat island intensity defined as the 1.5-m temperature difference between the urban and the rural simulations. The land-use type for the urban simulation is obtained from Korea Ministry of Environment (2007) land-use data after it is converted into the types used in the UM. It is found that the urban heat island intensity over high urban-fraction regions in the metropolitan area is as large as 1℃ in daytime and 3.2℃ in nighttime, i.e., the effects of urban heat island is much larger for night than day. It is also found that the magnitude of urban heat island intensity increases linearly with urban land-use fraction. Spatially, the estimated the urban heat island intensities are systematically larger in the downwind regions of the metropolitan area than in the upwind area due to the effects of temperature advection. Results of this study indicate that urban surface fraction in the city area and temperature advection play a key role in determining the spatial distribution and magnitude of urban heat island intensity.

Heat Island Intensity in Seongseo, Daegu, South Korea - a Rural Suburb Containing Large Areas of Water

  • Kim, Ki-Young;Byon, Jae-Young;Kim, Hae-Dong
    • 한국환경과학회지
    • /
    • 제22권10호
    • /
    • pp.1337-1344
    • /
    • 2013
  • We examined urban heat island intensity in Seongseo, Dae gu, South Korea, where a large area of water is located within the suburb. We found a maximum urban heat island intensity of $4.2^{\circ}C$, which occurred around 7 PM in the summer season. Throughout the remainder of the year, we observed the largest heat island intensity levels during late night hours. In contrast, the winter season displayed the smallest values for heat island intensity. Our results conflicted with heat island intensity values for cities where suburbs did not contain water areas. Generally, cities with suburbs lacking water displayed the largest heat island intensity levels before sunrise in the winter season. We also observed negative urban heat island intensity levels at midday in all seasons except for the summer, which is also in contrast with studies examining suburbs lacking water areas. The heat island intensity value observed in this study ($4.2^{\circ}C$) was relatively large and fell between the averages for, Asia and Europe according to the relationship between urban population and heat island intensity.

대구지역의 기상조건에 따른 도시열섬강도의 계절별 변화특성 (On the Seasonal Variation of Urban Heat Island Intensity According to Meteorological Condition in Daegu)

  • 안지숙;김해동
    • 한국환경과학회지
    • /
    • 제15권6호
    • /
    • pp.527-532
    • /
    • 2006
  • The purpose of this study is to clarify the characteristic of urban heat island intensity in urban area formed at a basin. Thermal environments for basin-type cities are influenced by significant topographic relief winds. In this study, we analyzed the diurnal variations of the heat island intensity according to meteorological condition and season using AWS(Automatic Weather observation System) data in Daegu Metropolitan area for 1 year(3/April, 2003 $\sim$ 2/April, 2004). In this study, we defined the urban heat island intensity as the air temperature difference between two points, the downtown and the suburban area. The suburban area is located at valley mouth around the western tip of Daegu. The results are summarized as follows; 1. The maximum heat island intensity was recorded at early morning under the meteorological conditions, calm and clear 2. The heat island intensity was strong in the order of winter, fall, spring and summer. 3. The heat island intensity came out minus values in the afternoon. This phenomenon is known as a com mon for basin-type cities. 4. The heat island intensity was twice or more in clear and calm than not so.

부산지역의 도시열섬 구조 변화에 관한 연구 (A Study on the Change of the Urban Heat Island Structure in Busan Metropolitan Area, Korea)

  • 김현수;석현배;김유근
    • 한국환경과학회지
    • /
    • 제23권11호
    • /
    • pp.1807-1820
    • /
    • 2014
  • The spatial and temporal changes of the annual mean urban heat island(UHI) intensity were investigated using near surface temperature data measured at 16 automatic weather systems(AWS) in Busan metropolitan area(BMA) during the 11-yr period, from 2000 to 2010. For nighttime, the annual mean UHI intensity at Dongnae(U1) in 2000 was weaker than it in 2010. However the change of the annual mean UHI intensity at Daeyeon(U2) during 11 years was different from it at U1. The annual frequency of the UHI intensity over $5^{\circ}C$ considerably increased at U2 and decreased at U1 during 11 years. The center of the UHI also spatially shifted southward with Daeyeon and Haeundae in BMA. It would be caused by the increase of urban area, population-density and transportation near U2 and by the decrease of them near U1. We found that the spatial and temporal differences of the UHI intensity have coincided with changes of land-use, population density and transportation in BMA.

부산지역 도시 열섬의 변화경향 분석 (2006-2010) (An Analysis on the Variation Trend of Urban Heat Island in Busan Area (2006-2010))

  • 도우곤;정우식
    • 한국환경과학회지
    • /
    • 제21권8호
    • /
    • pp.953-963
    • /
    • 2012
  • The annual variations of the urban heat island in Busan is investigated using surface temperature data measured at 3 automatic weather stations(AWSs) for the 5 years period, 2006 to 2010. Similar to previous studies, the intensity of the urban heat island is calculated using the temperature difference between downtown(Busanjin, Dongnae) and suburb(Gijang). The maximum hourly mean urban heat island are $1.4^{\circ}C$ at Busanjin site, 2300LST and $1.6^{\circ}C$ at Dongnae site, 2100LST. It occurs more often at Dongnae than Busanjin. Also the maximum hourly mean urban heat island appears in November at both sites. The urban heat island in Busan is stronger in the nighttime than in the daytime and decreases with increasing wind speed, but it is least developed in summer. Also it partly causes the increasement of nighttime PM10 concentration.

Mapping and Analyzing the Park Cooling Intensity in Mitigation of Urban Heat Island Effect in Lahore, Pakistan

  • Hanif, Aysha;Nasar-u-Minallah, Muhammad;Zia, Sahar;Ashraf, Iqra
    • 대한원격탐사학회지
    • /
    • 제38권1호
    • /
    • pp.127-137
    • /
    • 2022
  • Urban Heat Island (UHI) effect has been widely studied as a global concern of the 21st century. Heat generation from urban built-up structures and anthropogenic heat sources are the main factors to create UHIs. Unfortunately, both factors are expanding rapidly in Lahore and accelerating UHI effects. The effects of UHI are expanding with the expansion of impermeable surfaces towards urban green areas. Therefore, this study was arranged to analyze the role of urban cooling intensity in reducing urban heat island effects. For this purpose, 15 parks were selected to analyze their effects on the land surface temperature (LST) of Lahore. The study obtained two images of Landsat-8 based on seasons: the first of June-2018 for summer and the second of November-2018 for winter. The LST of the study area was calculated using the radiative transfer equation (RTE) method. The results show that the theme parks have the largest cooling effect while the linear parks have the lowest. The mean park LST and PCI of the samples are also positively correlated with the fractional vegetation cover (FVC) and normalized difference water index (NDWI). So, it is concluded that urban parks play a positive role in reducing and mitigating LST and UHI effects. Therefore, it is suggested that the increase of vegetation cover should be used to develop impervious surfaces and sustainable landscape planning.

서울지역의 도시열섬현상과 대기오염도의 관계에 관한 연구 (A Study on the Relation of Urban Heat Island and Air Pollution in Seoul Area)

  • 장영기;김정욱
    • 한국대기환경학회지
    • /
    • 제7권1호
    • /
    • pp.49-53
    • /
    • 1991
  • Relations of urban heat island and air pollution are analyzed by using $SO_2$ concentration data (winter season in 1985) from 10 sites of Seoul area and differences of wind speed and air temperature in urban and rural area. Urban heat island is developed when daily mean wind speed at urban site is lower than 1.5m/sec or in the interval of 3.0 $\sim$ 3.5m/sec. When differences between urban and rural air temperature is greater than the overall average of those differences, $SO_2$ concentrations of those above-average differences are 1.3 $\sim$ 1.8 times higher than those of below-average differences. The trends are shown obviously at north-eastern area of Seoul (Gilum Dong, Ssangmun Dong, Myeonmog Dong). When intensity of Urban Heat Island is weak, $SO_2$ concentration was reduced in propotion to a rise of wind speed. But $SO_2$ concentration is on the partial increase in spite of a rise of wind speed when intensity of urban heat island is strong.

  • PDF

인공열이 도시경계층에 미치는 영향 - 경인지역을 중심으로 - (Impacts of anthropogenic heating on urban boundary layer in the Gyeong-In region)

  • 구해정;유영희
    • 환경영향평가
    • /
    • 제21권5호
    • /
    • pp.665-681
    • /
    • 2012
  • This study investigates the influence of anthropogenic heat (AH) release on urban boundary layer in the Gyeong-In region using the Weather Research and Forecasting model that includes the Seoul National University Urban Canopy Model (SNUUCM). The gridded AH emission data, which is estimated in the Gyeong-In region in 2002 based on the energy consumption statistics data, are implemented into the SNUUCM. The simulated air temperature and wind speed show good agreement with the observed ones particularly in terms of phase for 11 urban sites, but they are overestimated in the nighttime. It is found that the influence of AH release on air temperature is larger in the nighttime than in the daytime even though the AH intensity is larger in the daytime. As compared with the results with AH release and without AH release, the contribution of AH release on urban heat island intensity is large in the nighttime and in the morning. As the AH intensity increases, the water vapor mixing ratio decreases in the daytime but increases in the nighttime. The atmospheric boundary layer height increases greatly in the morning (0800 - 1100 LST) and midnight (0000 LST). These results indicate that AH release can have an impact on weather and air quality in urban areas.

겨울철 도시지역과 교외지역의 기온변화 특성 (Characteristics of Temperature Variation in Urban and Suburban Areas During Winter)

  • 권성일;김진수;박종화;오광영;송철민
    • 한국농공학회논문집
    • /
    • 제50권2호
    • /
    • pp.55-63
    • /
    • 2008
  • We investigated characteristics of temperature variation in urban and suburban areas(e.g., paddy field, upland, park, residential area) and urban heat island(UHI) during winter(December 2005 to February 2006). The daily maximum air temperature was not significantly different between suburban and urban areas, whereas the daily minimum air temperatures were significantly lower in the suburban areas than that in the residential area. The wind speed in the urban park(0.3 m/s) was much lower than that in the paddy fields(2.3 m/s), likely due to an urban canopy layer formed by high buildings. The UHI intensity was represented by differences in daily minimum temperatures between urban residential and paddy field areas. The UHI intensity($4.1^{\circ}C$) in winter was larger than that($2.6^{\circ}C$) in summer. This may be because a stable boundary layer develops in the winter, and thereby this inhibits diffusion of heat from surface.

자동기상관측소의 국지기후대에 근거한 서울 도시 열섬의 공간 분포 (Spatial Distribution of Urban Heat Island based on Local Climate Zone of Automatic Weather Station in Seoul Metropolitan Area)

  • 홍제우;홍진규;이성은;이재원
    • 대기
    • /
    • 제23권4호
    • /
    • pp.413-424
    • /
    • 2013
  • Urban Heat Island (UHI) intensity is one of vital parameters in studying urban boundary layer meteorology as well as urban planning. Because the UHI intensity is defined as air temperature difference between urban and rural sites, an objective sites selection criterion is necessary for proper quantification of the spatial variations of the UHI intensity. This study quantified the UHI intensity and its spatial pattern, and then analyzed their connections with urban structure and metabolism in Seoul metropolitan area where many kinds of land use and land cover types coexist. In this study, screen-level temperature data in non-precipitation day conditions observed from 29 automatic weather stations (AWS) in Seoul were analyzed to delineate the characteristics of UHI. For quality control of the data, gap test, limit test, and step test based on guideline of World Meteorological Organization were conducted. After classifying all stations by their own local climatological properties, UHI intensity and diurnal temperature range (DTR) are calculated, and then their seasonal patterns are discussed. Maximum UHI intensity was $4.3^{\circ}C$ in autumn and minimum was $3.6^{\circ}C$ in spring. Maximum DTR appeared in autumn as $3.8^{\circ}C$, but minimum was $2.3^{\circ}C$ in summer. UHI intensity and DTR showed large variations with different local climate zones. Despite limited information on accuracy and exposure errors of the automatic weather stations, the observed data from AWS network represented theoretical UHI intensities with difference local climate zone in Seoul.