• Title/Summary/Keyword: Urban Greenhouse

Search Result 136, Processing Time 0.022 seconds

ESTABLISHMENT OF CDM PROJECT ADDITIONALITY THROUGH ECONOMIC INDICATORS

  • Kai. Li.;Robert Tiong L. K.;Maria Balatbat ;David Carmichael
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.272-275
    • /
    • 2009
  • Carbon finance is the investment in Greenhouse Gas (GHG) emission reduction projects in developing countries and countries with economies in transition within the framework of the Kyoto Protocol's Clean Development Mechanism (CDM) or Joint Implementation (JI) and with creation of financial instruments, i.e., carbon credits, which are tradable in carbon market. The additional revenue generated from carbon credits will increase the bankability of projects by reducing the risks of commercial lending or grant finance. Meantime, it has also demonstrated numerous opportunities for collaborating across sectors, and has served as a catalyst in bringing climate issues to bear in projects relating to rural electrification, renewable energy, energy efficiency, urban infrastructure, waste management, pollution abatement, forestry, and water resource management. Establishing additionality is essential for successful CDM project development. One of the key steps is the investment analysis. As guided by UNFCCC, financial indicators such as IRR, NPV, DSCR etc are most commonly used in both Option II & Option III. However, economic indicator such as Economic Internal Rate of Return(EIRR) are often overlooked in Option III even it might be more suitable for the project. This could be due to the difficulties in economic analysis. Although Asian Development Bank(ADB) has given guidelines in evaluating EIRR, there are still large amount of works have to be carried out in estimating the economic, financial, social and environmental benefits in the host country. This paper will present a case study of a CDM development of a 18 MW hydro power plant with carbon finance option in central Vietnam. The estimation of respective factors in EIRR, such as Willingness to Pay(WTP), shadow price etc, will be addressed with the adjustment to Vietnam local provincial factors. The significance of carbon finance to Vietnam renewable energy development will also be addressed.

  • PDF

An Evaluation of Net-zero Contribution Regarding Hydrogen Energy Conversion in Urban Building and Transport Sector (도시의 건물 및 수송 부문에서의 수소에너지 전환에 따른 탄소중립 기여도 평가)

  • SO JEONG JANG;RAE SANG PARK;YOUNG HOON CHOI;YONG WOO HWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.100-112
    • /
    • 2023
  • This study evaluated the contribution of carbon neutrality by calculating the carbon reduction amount and reduction intensity targeting the hydrogen pilot city and applying it to the carbon neutral reduction target. In the building sector, the reduction amount for 2030 was 10.8% on average. In addition, by 2050, the contribution to carbon neutrality of plan A was 14.1% on average, and the contribution to carbon neutrality of plan B was 15.1% on average. In the 2030 reduction amount of the transportation sector, the contribution to carbon neutrality was 138.4% on average. In addition, by 2050, the contribution to carbon neutrality in plan A was 82.5% on average, and the contribution to carbon neutrality in plan B was 74.9%. From the above research results, additional carbon reduction is possible when creating a hydrogen city, so it will be used as a basis of city-level carbon neutral model. It will also be used as a basis for technology development and investment promotion for various hydrogen supply methods in the future.

Energy Use Prediction Model in Digital Twin

  • Wang, Jihwan;Jin, Chengquan;Lee, Yeongchan;Lee, Sanghoon;Hyun, Changtaek
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1256-1263
    • /
    • 2022
  • With the advent of the Fourth Industrial Revolution, the amount of energy used in buildings has been increasing due to changes in the energy use structure caused by the massive spread of information-oriented equipment, climate change and greenhouse gas emissions. For the efficient use of energy, it is necessary to have a plan that can predict and reduce the amount of energy use according to the type of energy source and the use of buildings. To address such issues, this study presents a model embedded in a digital twin that predicts energy use in buildings. The digital twin is a system that can support a solution of urban problems through the process of simulations and analyses based on the data collected via sensors in real-time. To develop the energy use prediction model, energy-related data such as actual room use, power use and gas use were collected. Factors that significantly affect energy use were identified through a correlation analysis and multiple regression analysis based on the collected data. The proof-of-concept prototype was developed with an exhibition facility for performance evaluation and validation. The test results confirm that the error rate of the energy consumption prediction model decreases, and the prediction performance improves as the data is accumulated by comparing the error rates of the model. The energy use prediction model thus predicts future energy use and supports formulating a systematic energy management plan in consideration of characteristics of building spaces such as the purpose and the occupancy time of each room. It is suggested to collect and analyze data from other facilities in the future to develop a general-purpose energy use prediction model.

  • PDF

Comparison of Direct and Indirect $CO_2$ Emission in Provincial and Metropolitan City Governments in Korea: Focused on Energy Consumption (우리나라 광역지방자치단체의 직접 및 간접 $CO_2$ 배출량의 비교 연구: 에너지 부문을 중심으로)

  • Kim, Jun-Beum;Chung, Jin-Wook;Suh, Sang-Won;Kim, Sang-Hyoun;Park, Hung-Suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.874-885
    • /
    • 2011
  • In this study, the urban $CO_2$ emission based on energy consumption (Coal, Petroleum, Electricity, and City Gas) in 16 provincial and metropolitan city governments in South Korea was evaluated. For calculation of the urban $CO_2$ emission, direct and indirect emissions were considered. Direct emissions refer to generation of greenhouse gas (GHG) on-site from the energy consumption. Indirect emissions refer to the use of resources or goods that discharge GHG emissions during energy production. The total GHG emission was 497,083 thousand ton $CO_2eq.$ in 2007. In the indirect GHG emission, about 240,388 thousand ton $CO_2eq.$ was occurred, as 48% of total GHG emission. About 256,694 thousand ton $CO_2eq.$ (52% of total GHG emissions) was produced in the direct GHG emission. This amount shows 13% difference with 439,698 thousand ton $CO_2eq.$ which is total national GHG emission data using current calculation method. Local metropolitan governments have to try to get accuracy and reliability for quantifying their GHG emission. Therefore, it is necessary to develop and use Korean emission factors than using the IPCC (Intergovernmental Panel on Climate Change) emission factors. The method considering indirect and direct GHG emission, which is suggested in this study, should be considered and compared with previous studies.

The Image of Changgyeongwon and Culture of Pleasure Grounds during the Japanese Colonial Period (일제강점기 창경원의 이미지와 유원지 문화)

  • Kim, Jeoung-Eun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.1-15
    • /
    • 2015
  • Changgyeongwon emerged as pleasure grounds following the creation of a museum, zoo and botanical garden in Changgyeonggung Palace during the Japanese colonial period. Pleasure grounds offer space for entertainment and have maintained the image of a paradise apart from reality. This study examined the creation process of pleasure grounds within a royal palace and the following spatial changes. By analyzing the image of Changgyeongwon as an artificial paradise, this study explored its landscape and cultural aspects. Literature reviews on the intention and process showed that the Changgyeongwon pleasure grounds were created as a 'royal garden' for the amusement of Sunjong, as well as 'public pleasure grounds' in the process of colonization. It was one of the first public spaces open to everyone who could afford the entrance fee. The layout of Changgyeongwon was studied by a comparison and analyzation of modern plans and photographs. It was composed of the central museum zone, northern botanical garden zone, and southern zoological garden zone. A conservatory and greenhouse to exhibit and maintain tropical plants were intensively built in the botanical garden zone while an aviary was created on the zoo pond. In the vicinity of the aviary a vivarium was constructed. Museum exhibition facilities included a main building as well as existing buildings, and a western flower garden was created between the buildings. Space for children including a playground and horse-riding course were created in the 1930's. The paradisiacal image and pleasure grounds culture of Changgyeongwon were studied as follows. Firstly, it shows that Changgyeongwon's paradisiacal image where rare animals and exotic plants were open to the public was promoted by the zoo and botanical garden. This led to the creation of new popular leisure activities such as flower appreciation and animal watching. Secondly, Changgyeongwon offered an urban leisure space, symbolizing the 'non-urban nature within the city' where the urban residents could escape from the daily routine. Thirdly, Changgyeongwon was known for its 'fantastic night landscape' by its night opening during the cherry blossom season. This cherry blossom viewing at night sadly degenerated by various shows and drinking, and as a result, an image of a deviant paradise was given to Changgyeongwon. Changgyeongwon contributed to creating a new space with its diverse facilities, and the public embraced the urban culture through experiences of pleasure and entertainment.

A Study for Activation Measure of Climate Change Mitigation Movement - A Case Study of Green Start Movement - (기후변화 완화 활동 활성화 방안에 관한 연구 - 그린스타트 운동을 중심으로 -)

  • Cho, Sung Heum;Lee, Sang Hoon;Moon, Tae Hoon;Choi, Bong Seok;Park, Na Hyun;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.5 no.2
    • /
    • pp.95-107
    • /
    • 2014
  • The 'Green Start Movement' is a practical movement of green living to efficiently reduce the greenhouse gases originating from non-industrial fields such as household, commerce, transportation, etc. for the 'materialization of a low carbon society through green growth (Low Carbon, Green Korea)'. When the new government took office, following the Lee Myeongbak Administration that had presented 'Low Carbon, Green Growth' as a national vision, it was required to set up the direction of the practical movement of green life to respond to climate change persistently and stably as well as to evaluate the performance of the green start movement over the past 5 years. A questionnaire survey was administered to a total of 265 persons including public servants, members of environmental and non-environmental NGOs, participants of the green start movement and professionals. In the results of the questionnaire survey, many opinions have indicated that the awareness of the green start movement is increasing and the green start movement has had a positive impact on individual behavior and group behavior in terms of green living. The result shows, however, that the environmental NGOs don't cooperate sufficiently to create a 'green living' effect on a national scale. Action needs to be taken on the community level in order to generate a culture of environmental responsibility. The national administration office of the Green Start Movement Network should play the leading role between the government and environmental NGOs. The Green Start National Network should have greater autonomy and governance of the network needs to be restructured in order to work effectively. Also the Green Start Movement should identify specific local characteristics to support activities that reduce greenhouse gas emissions. Best practices can be shared to reduce greenhouse gas emissions by a substantial amount.

Comparison of Plant Growth Characteristics and Biological Activities of Four Asparagus Cultivars by Cultural Method (재배방법에 따른 아스파라거스 4 품종의 생장과 생리활성 비교)

  • Kim, Ho Cheol;Heo, Buk Gu;Bae, Jong Hyang;Lee, Seung Yeob;Kang, Dong Hyeon;Ryu, Chan Seok;Kim, Dong Eok;Choi, I Jin;Ku, Yang Gyu
    • Korean Journal of Plant Resources
    • /
    • v.29 no.4
    • /
    • pp.495-503
    • /
    • 2016
  • In the present study, we investigated the plant growth characteristics and biological activity of four asparagus cultivars grown using two cultural methods and tested the possibility of domestic open field. The number of shoots, buds, roots, shoot and root fresh and dry weights, and total dry weight of the four asparagus cultivars grown in a plastic house were higher than those of the same cultivars grown in an open field. Of the cultivars grown in the open field, Jersey Giant had greater shoot number than the other cultivars. In plastic house cultivation, the number of buds in Jersey Supreme was greater than the other cultivars. The total flavonoid content of the Jersey Giant was greater than the other cultivars, but cultural method was unaffected. The total polyphenol contents in asparagus cultivars grown in the plastic house were higher than those of cultivars grown in the open field. The total polyphenol content of the Jersey Giant grown the plastic house was significantly higher than those of other cultivars. Antioxidant activity such as catalase (CAT) and peroxidase (POX) did not differ significantly with cultural methods and among the cultivars. Ascorbate peroxidase (APX) activity of asparagus cultivars grown in the open field was higher than that of cultivars grown in the greenhouse; the highest APX activity was detected in UC157. Thus, greenhouse cultivation is expected to improve plant growth characteristics and biological activities of asparagus cultivars; each cultural method should be considered when selecting a suitable cultivar for high yield and high bioactive compound content.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.

Adaption of Phenological Eventsin Seoul Metropolitan and Suburbsto Climate Change (기후변화에 따른 수도권 생물계절 반응 변화에 관한 연구)

  • Hyomin Park;Minkyung Kim;Sangdon Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • The rapid advance of technology has accelerated global warming. As 50.4 percent of South Korea's population is concentrated in the Seoul Metropolitan Area, which has become a considerable emitter of greenhouse gases, the city's average temperature is expected to increase more rapidly than in other areas in the country. A rise in the average temperature would affect everyday life and urban ecology; thus, appropriate measures to cope with the forthcoming disaster are in need. This study analyzed the changes in plant phenological phases from the past to the present based on temperatures (average temperature of Feb, Mar, April) observed in seven different weather stations nearthe Seoul Metropolitan Area (Ganghwa, Seoul, Suwon, Yangpyeong, Icheon, Incheon, and Paju) and the first flowering dates of Plum tree (Prunus mume), Korean forsythia (Forsythia koreana), Korean rosebay (Rhododendron mucronulatum), Cherry tree (Prunus serrulate), Peach tree (Prunus persica), and Pear tree (Pyrus serotina). Then, RCP (Representative Concentration Pathways) 2.6 and 8.5 scenarios were used to predict the future temperature in the Seoul Metropolitan Area and how it will affect plant phenological phases. Furthermore, the study examined the differences in the flowering dates depending on various strategies to mitigate greenhouse gases. The result showed that the rate of plant phenological change had been accelerated since the 1900s.If emission levels remain unchanged, plants will flower from 18 to 29 earlier than they do now in the Seoul Metropolitan Area, which would be faster than in other areas in the country. This is because the FFD (First Flowering Date), is highly related to temperature changes. The Seoul Metropolitan Area, which has been urbanized more rapidly than any other areas, is predicted to become a temperature warming, forcing the FFDs of the area to occur faster than in the rest of the country. Changes in phenology can lead to ecosystem disruption by causing mismatches in species interacting with each otherin an ecosystem. Therefore, it is necessary to establish strategies against temperature warming and FFD change due to urbanization.

A Study on the Analysis and Methods to Improve the Management System for Building Energy Database (국가 건물에너지통합관리시스템의 데이터 품질 분석 및 개선방안 연구)

  • Kim, Sung-Min;Yoon, Jong-Don;Kwon, Oh-In;Shin, Sung-Eun
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.131-144
    • /
    • 2016
  • Damage occur frequently around the world on climate change and the main cause of greenhouse gas emissions regulation is growing. To this end, the government has built integrated management system for national building energy. The building energy information is total 6.8 million complex. Integrated management system for national building energy database are matched building registers information and energy information of the supply agencies. However, the matching process has its limitations so advanced work is in progress continuously. This study analyzed integrated management system for national building energy database quality and limitations and deduce improvement plan to increase system reliability and availability. The existing database matching average rate is 85.6%. 58.2% of the total non-matching data type has no building information. To ensure the ease of new database matching and the accuracy of the existing database matching, address standarization and building properties system are needed between building information and energy information. Also, The system construction is required to include information on other energy sources like petroleum energy which has high proportion of non-urban areas and small residential areas and renewable energy which has high potential in development and utilization.