• Title/Summary/Keyword: Urban Greenhouse

Search Result 136, Processing Time 0.02 seconds

Management of GHG Emissions from the Public Organizaions in Land and Housing Construction Sector (토지·주택 건설부문 공공기관의 온실가스 배출량 관리방안 고찰)

  • Lee, Ki-Hong;Yoo, Jung-Hyun;Rhim, Joo-Ho;Jeon, Seon-Jeong
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.307-313
    • /
    • 2011
  • This study was aimed to suggest a management strategy of GHG emissions for the public organizations in land and housing costruction sector. As public organizations' businesses are characterized as 'public' and 'comprehensive', these characteristics should be considered in scoping emissions, setting-up reduction target, building GHG inventory, and establishing management system. Since public organizations' activities in construction sector involve a wide range of social infrastructure construction projects, it is not easy to account their actions to reduce GHG emissions quantitatively. Therefore, this study suggested that a twofold approach is suitable for public organizations in construction area, classifying the measurable reductions and the immeasurable actions according to the their business characteristics. To give a concrete example, a GHG emission management system for the Korea Land and Housing Corporation (LH) was proposed.

The Program Development for Environmental Quality Level and Evaluation of Carbon Dioxide Emission in Construction Works (건설사업의 환경성 및 CO2 배출 평가 프로그램 개발)

  • Lee, Kyoung Hee;Kim, Hyo-Jin;Kwon, Suk-Hyun;Kim, Min-Ji
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.399-406
    • /
    • 2012
  • One-third of total energy and 50% of $CO_2$ emissions arise from construction phase. Because of this global amount of energy consumption and $CO_2$ emission, we must do our best to solve this problem. But our existing ways of meeting this problem has focused on the energy consumption saving of the construction and dwelling stage. On the other hand, we has been treated too lightly for handling the $CO_2$ emissions problem during the maintenance management and the demolition process so far,. In this paper, we quantitatively predicted and evaluated the environmental load in each construction step during all life cycle. And, we developed the environmental load assessment program for each construction step. And we proposed the reliable decision support model for objective and reliable environmental load assessment and reduction. This result must help the development of construction technology and low carbon & green growth.

Efficiency and Durability of Semi-Transparent Perovskite Solar Cells for BIPV (BIPV에 활용 가능한 반투명 페로브스카이트 태양전지의 효율 및 내구성에 관한 연구)

  • Kim, Su-kyung;Kim, Do-hyung;Soh, Joon-young;Choi, Dong-hyeok;Lee, You-sun;Kwak, Min-jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.157-161
    • /
    • 2020
  • Regarding greenhouse gas reduction, BIPV (Building Integrated Photovoltaics) is an important technology that can generate its own power in urban buildings based on clean energy resources. In particular, the perovskite material is attracting attention as a BIPV solar cell because it can have various colors and transparency. However, it is not easy to increase both transparency and efficiency factors because solar cell transparency and efficiency are inversely related to each other. Therefore, in this paper, we propose a semi-transparent perovskite solar cell structure that can improve both transparency and efficiency, and evaluate the stability according to international standard.

A Study on the Air Temperature Changes and Regional Characteristics in South Korea (우리나라 지역별 기온변화 특성)

  • Kim, Tae Ryong
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.131-167
    • /
    • 2009
  • Global warming is regarded as one of the most critical issues that should be taken care of by the entire global community as it threatens the survival of mankind. South Korea, in particular, undergoes faster warming than the average rate of global warming. South Korea has revealed various warming rates and trends being surrounded by sea on three sides and having complex terrains dominated by mountains. The rates vary according to regions and their urbanization and industrialization. Differences also derive from seasons and weather elements. Changes to the highest, mean, and lowest temperature are also different according to the characteristics of regions and observatories, which is more apparent where the force of artificial weather applies. In an urban area, temperature gaps tend to decrease as the lowest temperature rises more than the highest temperature. Meanwhile, temperature gaps grow further in a coastal or country region where the force of artificial weather is small and the force of natural weather prevails. In this study, the investigator analyzed the changes to the weather elements of 11 observation spots that had gone through no changes in terms of observation environment since 1961, were consecutively observed, and had the quality of their observation data monitored on an ongoing basis. Using the results, I tried to identify natural and artificial causes affecting certain spots. Located on the east coast of the Asian Continent, South Korea sees weather changing very dynamically. Having huge influences on our weather, China has achieved very rapid industrialization for the last 30 years and produced more and more greenhouse gases and air pollution due to large-size development projects. All those phenomena affect our weather system in significant ways. Global warming continues due to various reasons with regional change differences. Thus the analysis results of the study will hopefully serve as basic data of weather statistics with which to set up countermeasures against climate changes.

  • PDF

Thermal and Electrical Energy Mix Optimization(EMO) Method for Real Large-scaled Residential Town Plan

  • Kang, Cha-Nyeong;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.513-520
    • /
    • 2018
  • Since Paris Climate Change Conference in 2015, many policies to reduce the emission of greenhouse gas have been accelerating, which are mainly related to renewable energy resources and micro-grid. Presently, the technology development and demonstration projects are mostly focused on diversifying the power resources by adding wind turbine, photo-voltaic and battery storage system in the island-type small micro-grid. It is expected that the large-scaled micro-grid projects based on the regional district and town/complex city, e.g. the block type micro-grid project in Daegu national industrial complex will proceed in the near future. In this case, the economic cost or the carbon emission can be optimized by the efficient operation of energy mix and the appropriate construction of electric and heat supplying facilities such as cogeneration, renewable energy resources, BESS, thermal storage and the existing heat and electricity supplying networks. However, when planning a large residential town or city, the concrete plan of the energy infrastructure has not been established until the construction plan stage and provided by the individual energy suppliers of water, heat, electricity and gas. So, it is difficult to build the efficient energy portfolio considering the characteristics of town or city. This paper introduces an energy mix optimization(EMO) method to determine the optimal capacity of thermal and electric resources which can be applied in the design stage of the real large-scaled residential town or city, and examines the feasibility of the proposed method by applying the real heat and electricity demand data of large-scale residential towns with thousands of households and by comparing the result of HOMER simulation developed by National Renewable Energy Laboratory(NREL).

On Recent Variations in Solar Radiation and Daily Maximum Temperature in Summer (여름철 일 최고기온과 일사량의 최근 변동에 관하여)

  • Choi, Mi-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.185-191
    • /
    • 2009
  • Few studies have attempted to analyze variations of daily maximum temperature in the summer whereas many studies have analyzed warming trends in other seasons with respect to greenhouse gases or urban heat islands. We analyzed daily maximum temperature data for the summer season (June to August) at 18 locations in South Korea from 1983 to 2007. Compared to the climatic normal (from 1971 to 2000), an average increase of $0.1^{\circ}C$ was found for the summer daily maximum temperature along with an increase of $0.61MJ\;m^{-2}$ in daily solar radiation. Approximately 65% of the annual variations of the summer daily maximum temperature could be explained by the solar radiance alone. Higher atmospheric transmittance due to lower aerosol concentration (especially of sulfur dioxide) is believed to have caused the recent increase in solar irradiance. Daily maximum temperature of the summer is expected to keep rising if the clean air activities are maintained in the future.

Effect of Traffic Calming Using Speed-Maintained Standardization on Environment-Friendliness of Downward Slope Location based on GHG Emission Indicators (자연친화적인 급내리막 직선부에서 GHG 배출지표에 근거한 속도유지표준화 형태의 교통정온화)

  • Hong, Su-Jeong;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • PURPOSES: In this paper, the effectiveness of speed-maintained standardization in road geometry on environmental impact at a downward slope location, based on greenhouse gas (GHG) emission indicators, was studied. Specifically, the aim of this study was to ascertain whether speed-maintained standardization resulted in decreased $CO_2$ emissions as well as noise pollution, due to reduced vehicle speeds. METHODS : In this study, speed-maintained standardization in road geometry was proposed as a means to reduce vehicle speeds, with a view to reducing $CO_2$ emissions and noise pollution. This technique was applied at a downward slope location. The vehicle speeds, $CO_2$ emissions, and noise levels before and after application of speed-maintained standardization were compared. RESULTS: It was found that speed-maintained standardization was effective as a means to reduce speed, as well as $CO_2$ emissions and noise pollution. By applying speed-maintained standardization, it was confirmed that vehicle speeds were reduced consistently. As a result, $CO_2$ emissions and noise levels were decreased by 9% and 11%, respectively. CONCLUSIONS : This study confirmed that speed-maintained standardization in road geometry is effective in reducing vehicle speeds, $CO_2$ emissions, and noise levels. Moreover, there is further scope for the application of this method in the design of roads in urban and rural areas, as well as in the design of highways.

A New Gymnocalycium mihanovichii 'Ihong' with Bright Red Color and Good Propagation (자구 생성능이 우수한 진적색 비모란 선인장 '이홍' 육성)

  • Park, Pil Man;Yae, Byeong Woo;Kim, Mi Sun;Lee, Young Ran;Park, Pue Hee;Jeong, Myeung II;Yoo, Bong Sik
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.4
    • /
    • pp.248-250
    • /
    • 2011
  • A new grafted cactus cultivar, G. mihanovichii 'Ihong', for exporting abroad, was developed by crossing G. mihanovichii 'DR' line with dark red color, and G. mihanovichii 'Seolhong' cultivar with dark red in 2005. It grew for 6 months after grafting in vitro and culturing at 100 mL test tube. After grafting and planting in greenhouse in 2006, various characteristics were evaluated three times until 2009. It has flat round shape and dark red skin. In addition, it has 8 to 10 ribs and brown straight spines on the body. Its diameter was 44.0 mm after 10 months from planting, and bigger comparing with that of 'Seolhong' cultivar. The ability of propagation in 'Ihong' was better than that of 'Seolhong' and 'Ihong' approximately produced 15.8 offsets for 10 months.

A New Gymnocalycium mihanovichii 'Hwangun' with Bright Yellow Color (밝은 황색 비모란 선인장 '황운' 육성)

  • Park, Pil Man;Kim, Won Hee;Lee, Eun Kyung;Kim, Seung Tae;Jeong, Myeung II;Yoo, Bong Sik
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.4
    • /
    • pp.291-294
    • /
    • 2010
  • A new grafted cactus cultivar, G. mihanovichii 'Hwangun', for exporting abroad, was developed by crossing G. mihanovichii 'Hwangwol' variety with yellow and orange color, and G. mihanovichii '0111021' line with yellow color in 2008. It grew for 6 months after grafting in vitro and culturing at 100 mL test tube. After grafting and planting in greenhouse in 2005, various characteristics were evaluated three times until 2008. It has flat-round shape and bright yellow skin. In addition, it has 7 to 9 ribs and brown straight spines on the body. The diameter of it was 40.9 mm after 10 months after planting, and small comparing with G. mihanovichii 'Hukwang' cultivar. The ability of propagation in G. mihanovichii 'Hwangun' is prior to that of G. mihanovichii 'Hukwang' producing approximately 22.3 daughter globes for 10 months.

A Study on Battery Charging and Supply System of Electric Vehicle Using Photovoltaic Generation (태양광 발전을 이용한 전기자동차 배터리 충전 및 공급시스템에 관한 연구)

  • Choi, Hoi-Kyun
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.265-273
    • /
    • 2017
  • Recently the Paris Climate Change Accord has been officially put into effect, making global efforts to implement Greenhouse Gas (GHG) reductions, and also International environmental regulations in the automotive sector will be further strengthened. The electric vehicle, which minimizes the particulate matter generated by existing internal combustion engine automobiles, is evaluated as a representative eco-friendly automobile. However, charging the battery of an electric vehicle is not fully environment-friendly if it is fueled by electricity that is being generated by fossil fuels as an energy source. The energy generated by the photovoltaic power generation system, which is an infinite clean energy, can be used to charge an electric vehicle's battery. Currently, shortage of charging facilities, time of charging, and high battery prices are the problem of activating the supply of electric vehicles. This study is to build a conjunction between the EVBSS (Electric Vehicle Battery Supply System) and ESS (Energy Storage System), which can quickly supply the photovoltaic charged battery to the required demand. If the charged battery in the Battery Swapping Station (BSS) is swapped swiftly, it will dramatically shorten the waiting time for charging the battery. As a result, if the battery is rented when it is needed, electric vehicles can be sold without the cost of a battery, which accounts for a large portion of the total cost, then the supply of electric vehicles are expected to expand. Furthermore, it will be an important alternative to maneuver climate change by minimizing GHG emissions from internal combustion engine vehicles.