• Title/Summary/Keyword: Urban Green Infrastructure

Search Result 155, Processing Time 0.022 seconds

Development and Application of Evaluation System for Disaster Prevention Ability of Urban Parks (도시공원 방재기능 평가체계 개발 및 적용)

  • Huang, Zhirui;Lee, Ai Ran
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.199-207
    • /
    • 2020
  • Against the backdrop of frequent weather disasters such as floods, droughts, and heat waves worldwide, urban parks should provide functions for the safety of urban residents as well as rest, culture, and ecological functions. In this study, a classification system for urban disaster prevention parks is proposed for the safety of the urbanites with the aim of securing a complex function in a green space in response to climate changes in the city. Analytical indicators were extracted through literature research, and the classification system was verified through on-site surveys of the target sites and interviews with those involved. The large class for evaluation was divided into three types: location, spatial composition, and disaster prevention complex facilities of urban parks; the direction of improvement was proposed for problems identified through empirical analysis.

A Study on Application of LID Technology for Improvement of Drainage Capacity of Sewer Network in Urban Watershed (도시 유역의 우수관망 통수능 개선을 위한 LID 기술 적용 연구)

  • Baek, Jongseok;Kim, Baekjoong;Lee, Sangjin;Kim, Hyungsan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.617-625
    • /
    • 2017
  • Both domestic and overseas urban drainage systems have been actively researched to solve the problems of urban flash floods and the flood damage that is caused by local downpours. Recent urban planning has been designed to better manage the floods of decentralized rainfall-management systems, and the installation of green infrastructure and low-impact development (LID) facilities at national ministries has been recommended. In this study, we use the EPA SWMM model to construct a decentralized rainfall-management network for each small watershed, and we analyze the effect of the drainage-capacity improvement from the installation of the LID technologies in vulnerable areas that replaces the network-expansion process. In the design of the existing urban piping systems, it is common to increase the pipe size due to the increment of the impervious area, the steep terrain, and the sensitive entrance-ramp junction; however, the installation of green infrastructure and LID facilities will be sufficient for the construction of a safe urban drainage system. The applications of LID facilities and green infrastructure in urban areas can positively affect the recovery of the corresponding water cycles to a healthy standard, and it is expected that further research will occur in the future.

Planning of Neighborhood Parks for the Disaster Prevention in Jecheon City (제천시의 방재형 도시 근린공원 조성 계획)

  • Lee, Ai-Ran
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.296-304
    • /
    • 2015
  • The rapid increase in the number of climate disasters combined with the scale of change and the diversification of natural disasters require a radical solution. In particular, the urban space is more complex, therefore we need to establish measures for disaster response and how to react to damaged infrastructure based on the phenomenon of an increase in the urban population and the impermeable layer being extended. The social problems related to the economic burden of land purchase and the securing of a disaster prevention system can be solved simultaneously by introducing the park system for disaster reduction into the public land of the green space in the city. The local government has recently adapted diverse systems of disaster mitigation and carried out pioneer projects according to the guidelines for the construction of the urban park for disaster prevention published by the Ministry of Land, Infrastructure and Transport. The purpose of this study is to propose a composition model for neighborhood parks to prevent disaster through urban green spaces which has the functions of water management and biotope conservation. The result of this study will contribute to utilize the climate change adaptation model for living area neighborhood parks in the existing urban structure.

A Study on Strategic Direction of Urban Management through Evaluation of Value-for-Money for Urban Development Projects - Focused on the Region of Gugal Station Area in Yongin City - (도시개발사업의 투자가치 평가를 통한 전략적 도시관리 방안에 관한 연구 - 용인시 구갈 역세권 지역을 중심으로 -)

  • Hwang, Eui-Pyo;Won, Jai-Mu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.1-11
    • /
    • 2010
  • In this study, we studied strategic directions of urban management through evaluation the value of the investment with the consideration of the development plan, the condition of the location, the potential of the site, green and disaster prevention infrastructure, focused on Gugal-dong(Gugal Station area) and the region of Bora, Jung-dong, in Yongin city. In terms of the methodology, we tried to decide using Analytic Network Process which can consider the relation between the evaluation items. In conclusion, for the development plan, the order of evaluation items is development purpose, key tenant, fund raising and marketing, and for the condition of the location, the order of evaluation items is land use, surrounding environment, and traffic environment, and for the development potential, the order is marketability, identity, and historic character, and for the green and disaster prevention infrastructure, the order is prevention of human, natural, social disaster. The significance of the conclusion of this study is that it can be utilized in pre-evaluation in planning the urban development.

SUSTAINABILITY SOLUTIONS USING TRENCHLESS TECHNOLOGIES IN URBAN UNDERGROUND INFRASTRUCTURE DEVELOPMENT

  • Dae-Hyun (Dan) Koo;Samuel Ariaratnam
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.367-374
    • /
    • 2013
  • Underground infrastructure systems provide essential public services and goods through buried structures including water and sewer, gas and petroleum, power and communication pipelines. The majority of existing underground infrastructure systems was installed in green field areas prior to development of complex urban built environments. Currently, there is a global trend to escalate major demand for underground infrastructure system renewal and new installation while minimizing disruption and maintaining functions of existing superstructures. Therefore, Engineers and utility owners are rigorously seeking technologies that minimize environmental, social, and economic impact during the renewal and installation process. Trenchless technologies have proven to be socially less disruptive, more environmentally friendly, energy conservative and economically viable alternative methods. All of those benefits are adequate to enhance overall sustainability. This paper describes effective sustainable solutions using trenchless technologies. Sustainability is assessed by a comparison between conventional open cut and trenchless technology methods. Sustainability analysis is based on a broad perspective combining the three main aspects of sustainability: economic; environmental; and social. Economic includes construction cost, benefit, and social cost analysis. Environmental includes emission estimation and environmental quality impact study. Social includes various social impacts on an urban area. This paper summarizes sustainable trenchless technology solutions and presents a sustainable construction method selection process in a proposed framework to be used in urban underground infrastructure capital improvement projects.

  • PDF

Derivation of Rural Service and Infrastructure Factor Considering Urban-to-rural Migration - Focus on Welfare and Culture - (도시민 유입을 고려한 농촌 서비스 및 인프라 개선 주요 항목 도출 - 복지문화 요인을 중심으로 -)

  • Bae, Seung-Jong;Kim, Soo-Jin;Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.2
    • /
    • pp.39-49
    • /
    • 2020
  • This study was attempted to grasp the push-pull factors of urban to rural migrants in relation to services and infrastructure of rural welfare and culture. Online and offline survey were conducted for urban residents who were willing to return to the rural area and those who were already returning to the rural area. In the fields of health care, social welfare, and education, it was found that the satisfaction level of urban-to-rural migrants was relatively higher than those of latent urban-to-rural migrants. In the field of culture, leisure and sports, the level of satisfaction and concern were similar, so it was found that the expectations for the field were relatively high before returning rural area. As for the agreement degree to expand support, the demand for emergency medical facilities and dementia care program was the highest, and the demand for health care was found to be relatively high. The results of the survey on the top priority items indicate that latent urban-to-rural migrants require support of facility and space item and expansion of program item, and urban-to-rural migrants have high demand for expansion of program item in all field except healthcare field. The results of this study are expected to provide useful information for establishing the direction of the rural area development project in connection with the revitalization of policy of people return to rural area.

Plant.Green.Living Environment -Urban Construction and Establishment of Green Space in Kunming-

  • Cheng, Hai-Lan
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.1
    • /
    • pp.131-134
    • /
    • 2001
  • Green and plants, as it symbol the life and depute the nature, always give human an easy comfort psychologically. The paper is a brief analysis to the idea frame of urban construction and reform of Kunming through our practice about ten years. On which three main principles should be carefully considered. One is that the green-space composed of plant system is of the important infrastructure of a modern city as it can not be instead of by any other factor in the ecological system of the city. The other is that in the course of planning and construction the local feature as well as its culture tradition in history should be pied more attention. In order to create a distinguish character of itself the third may be more important that to coordinate each key elements of it such as green, water, light, building, road, etc., to get a harmonious sphere of human and nature. A modern city should be a green city in which nature and man co-exist harmoniously.

  • PDF

Transforming a Buffer Green into an Urban Park as Multi-functional Green Infrastructure - A Case of the Buffer Green of Sinmae Market in Daegu, Korea - (입체적 도시기반시설로서 완충녹지의 공원화 계획 - 대구광역시 신매시장 완충녹지 공원화 계획을 사례로 -)

  • Kim, Miyeun;Min, Byoungwook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.101-112
    • /
    • 2021
  • In Korea, efforts have been made continuously to improve the environment of traditional markets concerning the issues of urban regeneration. In particular, many old cities and traditional markets face a lack of parking spaces. As a solution to this, attempts are being made to prepare underground parking spaces by designing urban planning facilities in three-dimensional ways and utilizing the upper part as a more meaningful space. This study is about the master plan to use the upper green area while creating an underground parking lot at 571 Sinmae-dong, Suseong-gu, Daegu. This green area was defined as a space with dual values, 'defensive green space' that needs to be ecologically protected, and 'active cultural space' where walking flows to the market and various events are concentrated. Three specific design strategies to balance these values were presented. First, to prevent indiscriminate occupation and damage by people and maintain a healthy green environment, securing the maximum amount of undivided green space in the site was suggested. Second, a space layout and a topography and planting patterns that can overcome the morphological characteristics of narrow and long-shaped sites enable the experience of abundant green spaces. Third, providing space to strengthen the connections with nearby urban facilities such as Sinmae Market and Gosan Library can also intensively accommodate cultural activities in various cities. This study has academic significance in providing implications for urban regeneration projects with similar contexts in the future.

Satisfaction Analysis for Green Infrastructure Activation around Dam in Terms of Sustainability (지속가능성 측면에서의 댐 주변 그린인프라 활성화를 위한 만족도 분석)

  • Lee, Dong-Kyu;Son, Byung-Hoon;An, Byung-Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.83-94
    • /
    • 2023
  • This study analyzed the satisfaction of green infrastructure around 39 dams, including multi-purpose dams, water dams, and flood control reservoir dams, to induce space improvement in terms of sustainability, and the results of the study are as follows. First, the satisfaction level based on the Likert scale of 5 points for the currently created dam green infrastructure was 3.76, and there were differences depending on the respondents' gender, age, residence, number of dam visits, and the need to pursue sustainability, and it was analyzed to be statistically significant. In the case of gender, p<.05, age, residence, number of dam visits, and the need to pursue sustainability were found to be p<.01. Regression analysis was conducted to confirm the effect of these respondents' characteristics on satisfaction, and it was analyzed that only the number of dam visits and the need to pursue sustainability had a statistically significant effect, and other characteristic variables had no significant effect. Second, in terms of satisfaction with the conceptual image of public bridge, view place and play space, which are the main spaces of dam green infrastructure considering sustainability, view place was the highest at 4.43, the play space was 4.35 and public bridge was analyzed as 4.21. The t-test result for the satisfaction of each space was found to be p<.01, and the difference in values was analyzed to be significant. The difference from the current satisfaction with green infrastructure was also analyzed as p<.00, showing a statistically significant difference. Third, as a way to revitalize green infrastructure around the dam through the results of satisfaction analysis, it is necessary to identify needs for major visitors in their 40s and 50s and create a space considering them. It was proposed to derive facilities and programs that can be introduced to other regions through the analysis of green infrastructure status around dams in Chungbuk, Jeonju, and Ulsan, where there are relatively many dams. Furthermore, satisfaction analysis by space showed that green infrastructure around the dam could be activated in terms of sustainability when selecting packaging materials considering the structure and shape of the dam, arranging observation facilities considering lake prospects, and introducing amusement facilities using local environmental resources. This study differs from previous studies in that it presented space improvement measures in consideration of sustainability for green infrastructure around dams for non-urban areas, and space improvement can contribute to improving it connectivity in urban and non-urban areas, which can also contribute to improving the sustainability of green infrastructure in Korea.

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.