• Title/Summary/Keyword: Urban Green Infrastructure

Search Result 155, Processing Time 0.025 seconds

Analyses of Residents Satisfaction with the Differences in Green Space Infrastructure for Three Cities, Gwacheon, Uiwang, and Hanam (도시 공원녹지 환경의 차이에 따른 주민 만족도 변화 분석 -과천·의왕·하남시를 사례로-)

  • Park, Eun-Jin;Sung, Hyun-Chan;Seo, Jung-Young;Kang, Kyu-Yi;Sung, Mi-Sung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.3
    • /
    • pp.60-70
    • /
    • 2007
  • Green space infrastructures for three cities, Gwacheon, Uiwang, and Hanam, were analyzed in terms of the area of urban parks per capita, the percentage of green space area, the area of green space per capita, and the percentage of vegetation cover in residential area, etc., which are commonly used as criteria for urban green space planning. The differences in green space infrastructure among these three cities were compared to the satisfaction level of residents for their green space. The area of parks per capita corresponded to the satisfaction level when Seoul Great Park in Gwacheon and Misa Park in Hanam were not included. Although these two huge parks accounted more than 90% of the area of urban parks in Gwacheon and Hanam, they serve more people from outside the cities and not likely visited by residents due to lacking of daily accessibility. The percentage of vegetation cover in residential area were considered to affect the satisfaction of residents for green space, whereas the total area of green space or the percentage of green space area in the cities was not related to the satisfaction level. It suggests that the distributions and accessibilities of green space and park service are more important for satisfaction than total green space area indicating urban sustainability.

Assessment of the Particulate Matter Reduction Potential of Climbing Plants on Green Walls for Air Quality Management

  • Jeong, Na Ra;Kim, Jeong-Hee;Han, Seung Won;Kim, Jong-Cheol;Kim, Woo Young
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.377-387
    • /
    • 2021
  • Background and objective: To improve air quality, particulate matter (PM) can be reduced using green infrastructure. Therefore, in this study, we aimed to determine the particulate matter reduction potential of climbing plants used for green walls, an element of vertical green infrastructure. Methods: A sealed chamber with controlled environmental variables was used to assess the PM reduction level caused by climbing plants. PM concentration in the plant chamber was measured after two and four hours of PM exposure, and the reduction potential was assessed based on the leaf area. Results: Compared to the empty chamber (Control), the PM reduction speed per hour was higher in the plant chamber, which confirmed that climbing plants contribute to the reduction of PM in the air. The PM reduction speed immediately after exposure in the plant chamber was high, but this slowed over time. Additionally, PM has been continuously reduced in plants with large leaves. As a result of calculating the particulate matter reduction level based on leaf area, it was found that there was a difference by particle size. Actinidia arguta, Parthenocissus tricuspidata, Trachelospermum asiaticum, and Euonymus fortunei var. radicans showed a high reduction effect. The trichomes on the leaf surface of Trachelospermum asiaticum were found to affect PM reduction. Conclusion: PM adsorption on the leaf surface is an important factor in reducing its concentration. It was possible to compare different plants by quantifying the amount of PM reduction during a fixed time period. These results can be used as the basic data to select the plant species suitable for urban green walls in terms of PM reduction.

Policy for Establishment of Green Infrastructure (녹색 인프라 구축을 위한 정책)

  • Park, Jae-Chul;Yang, Hong-Mo;Jang, Byoung-Kwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.43-50
    • /
    • 2012
  • The Green Infrastructure Framework refers to an interconnected network formed by greenways that links gardens, parks, green spaces, streams, wetlands, agricultural lands, and green belts. Green infrastructure supports diverse functions to environment, provides various benefits to people, and helps in the community's health and viability. It can store stormwater runoff and abate its non-point source pollutants. Due to its advantages and profits, advanced countries in environment policies have adopted green infrastructure in planning and implementing urban and regional development. The Korean government and municipalities have focused upon grey infrastructure investment in the past, which causes occurrence of natural disasters such as draught, flood, and landslides, degradation of water and air quality, decline of biodiversity, and even inhibition of economic activities. In order to alleviate these problems, it is requested to formulate and implement policies for green infrastructure at the national government level. USA and Korean situation of green infrastructure were investigated; forty components of green infrastructure were drawn. Nine policies utilized in the USA cases were identified, which are applicable to Korea. Among them, five policies can be implemented in public sector and four in private one. The green infrastructure law needed in Korea was suggested. The amendments of laws regarding green infrastructure and alternatives expending it were proposed.

Analysis of Contribution to Net Zero of Non-Urban Settlement - For Green Infrastructure in Rural Areas - (비도시 정주지의 탄소중립 기여도 분석 - 농촌지역 그린인프라를 대상으로 -)

  • Lee, Dong-Kyu;An, Byung-Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.3
    • /
    • pp.19-34
    • /
    • 2022
  • This study was conducted to provide basic data that can be used when establishing Net Zero policies and implementation plans for non-urban settlements by quantitatively analyzing the Net Zero contribution to green infrastructure in rural areas corresponding to non-urban settlements. The main purpose is to first, systematize green infrastructure in rural areas, secondly derive basic units for each element of green infrastructure, and thirdly quantify and present the impact on Net Zero in Korea using these. In this study, CVR(Content Validity Ration) analysis was performed to verify the adequacy of green infrastructure elements in rural areas derived through research and analysis of previous studies, is as follows. First, Hubs of Green infrastructure in rural area include village forests, wetlands, farm land, and smart farms with a CVR value of .500 or higher. And Links of Green infrastructure in rural area include streams, village green areas, and LID (rainwater recycling). Second, the basic unit for each green infrastructure element was presented by classifying it into minimum, maximum, and median values using the results of previous studies so that it could be used for spatial planning and design for Net Zero. Third, when Green infrastructure in rural areas is applied to non-urban settlements in Korea, it is analyzed that it has the effect of indirectly reducing CO2 by at least 70.76 million tons and up to 141.16 million tons. This is 3.4 to 6.7 times the amount of CO2 emission from the agricultural sector in 2019, and it can be seen that the contribution to Net Zero is very high. It is expected to greatly contribute to the transformation of the ecosystem. This study quantitatively presented the carbon-neutral contribution to settlements located in non-urban areas, and by deriving the carbon reduction unit for each element of green infrastructure in rural areas, it can be used in spatial planning and design for carbon-neutral at the village level. It has significance as a basic research. In particular, the basic unit of carbon reduction for each green infrastructure factors will be usable for Net Zero policy at the village level, presenting a quantitative target when establishing a plan, and checking whether or not it has been achieved. In addition, based on this, it will be possible to expand and apply Net Zero at regional and city units such as cities, counties, and districts.

Improvement and application of SWMM-ING for carbon reduction in green infrastructure (그린인프라시설의 탄소저감을 위한 SWMM-ING 개선 및 적용성 평가)

  • Young Jun Lee;Chaeyoung Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.335-345
    • /
    • 2023
  • In Korea, as part of the Green New Deal project toward a carbon-neutral society, it is necessary to build a climate-resilient urban environment to green the city, space, and living infrastructure. To this end, SWMM-ING was improved and the model was modified to analyze the carbon reduction effect. In addition, I plan to select target watersheds where urbanization is rapidly progressing and evaluate runoff, non-point pollution, and carbon reduction effects to conduct cost estimation and optimal design review for domestic rainwater circulation green infrastructure. In this study, green infrastructure facilities were selected using SWMM-ING. Various scenarios were presented considering the surface area and annual cost of each green infrastructure facility, and The results show that the scenario derived through the APL2 method was selected as the optimal scenario. In this optimal scenario, a total facility area of 190,517.5 m2 was applied to 7 out of 30 subwatersheds to achieve the target reduction. The target reduction amount was calculated a 23.50 % reduction in runoff and a 26.99 % reduction in pollutant load. Additionally, the annual carbon absorption was analyzed and found to be 385,521 kg/year. I aim to achieve additional carbon reduction effects by achieving the goal of reducing runoff and non-point pollution sources and analyzing annual carbon absorption. Moreover, considering the scale-up of these interventions across the basin, it is believed that an objective assessment of economic viability can be conducted.

Planning Directions for Parks and Green Spaces in Future Industrial Complexes according to Changes in the Industrial Environment (산업환경 변화에 따른 미래형 산업단지의 공원녹지 계획방향에 관한 연구)

  • Lee, Eun-yeob;Lee, Hyeon-Ju;Kim, Tae-Gun;Choi, Dae-Sik;Song, Young-il
    • Journal of Environmental Science International
    • /
    • v.30 no.2
    • /
    • pp.109-118
    • /
    • 2021
  • Due to changes such as those stemming from the onset of the fourth industrial revolution, it is expected that industrial complexes will transform from being spacious structures into smaller, integrated complexes. Green parks, which are also a type of infrastructure within industrial complexes, also require planned direction suited to the changing environment. The planned directions of green parks in new industrial complexes were examined and surveys were conducted on industrial complex workers. Preferred functional arrangement, importance, and satisfaction levels of green ratios, preference of compound facilities linked to parks, appropriate dimensional greening methods were all surveyed across 1,035 businesses. Results of the survey exhibited that there was high awareness on the importance of building green areas, but it was found that current greenery levels were insufficient. There was a high rate of responses indicated that dimensional greening is required in building-type industrial spaces, and preferences for rooftop greenery, stair-type greenery, and atrium greenery were also high. There were many opinions that it is necessary to integrate cultural facilities, exhibition and educational facilities, commercial facilities, parking lots in parks. Furthermore, it was found that it is necessary to provide pathways for bikes and pedestrians, rather than those for vehicles, and to connect them with the green parks. This study stopped short of exploring the directions for which green parks should aim in new industrial complexes with changes in the industrial environment. In the future, more concrete plans on green park planning techniques according to the spatial characteristics and structures of new industrial complexes will be necessary.

The Consolidation and Implementation of Green Infrastructure Policy in Urban Spatial Planning - Focused on the London Plan & the All London Green Grid - (그린 인프라스트럭처 정책의 확대와 적용 - 런던플랜과 런던 그린그리드를 중심으로 -)

  • Yoon, Sang-Jun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.2
    • /
    • pp.83-95
    • /
    • 2016
  • Strategies for parks and open spaces in the 21st century have moved from focusing on specific elements, such as quantitative growth and ecological and recreational aspects, to green infrastructure, which refers to a multi-functional network of open and green spaces offering a range of benefits. In the case of London, green infrastructure is realised as an integral part of urban infrastructure, involving physical and social infrastructure as well as practical spatial planning at the local level within statutory urban planning as part of a continuously developing green infrastructure framework with a theoretical basis. Taking this perspective, the present study looks at alterations to and developments in green infrastructure policies in the London Plan, the green grid framework as detailed in the city's strategic implementation of green infrastructure. Various trends and characteristics of the policies adopted in the London Plan and some implications are deduced, with three main results being identified. The first is a clear division of roles among the national government, Greater London Authority and borough councils, with local plans established under the guidance of the National Planning Policy Framework (NPPF) and the London Plan. Green infrastructure policies in the London Plan have been applied at a high rate in the boroughs' local plans, which leads to another, linked point. Secondly, green infrastructure policies and the green grid as an implementation framework have been consistently extended and developed through consolidating the London Plan, despite the change of government. Finally, in order to achieve the London Plan, the Mayor of London implemented policies by partnership and supporting programmes for London boroughs. Recently, the Seoul Metropolitan Authority introduced a parks and green spaces development policy, but the London case remains a good example; this is because green infrastructure policies in London were not a manifesto pledge but rather have been continuously and consistently advanced regardless of party politics and thus realised as long-term planning.

A Study on the Planning for the Daemo Mt. Urban Park (대모산 도시자연공원의 정비방향설정에 관한 기초적 연구)

  • Kim, Hyun;Lee, Dong Kun;Kwon, Jeong Ah
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.1
    • /
    • pp.51-58
    • /
    • 2002
  • Since planning of green-network is deeply being discussed, natural environmental disruption from an enlarged civilization is causing serious problems for urban communities. The purpose of this research is to support green-network infrastructure of Gangnam-gu, Seoul, considering ecological environmental planning for urban parks. The Methodologies for this study are landcover classification, NDVI and subjective analysis, and residents' survey. Findings of this research are as follows : 1) Based on the results, the area adjacent to Daemo mountain shows significant differences between 1985 and 1999. These results imply that the green space has been decreasing and deeply destroying. 2) Residents' survey shows that people want to live with wild animals and plants in the natural park. Future development planning of urban park should consider primary factors : ecosystem, increasing inhabitants' participation.

A Green View Index Improvement Program for Urban Roads Using a Green Infrastructure Theory - Focused on Chengdu City, Sichuan Province, China - (그린인프라스트럭처 개념을 적용한 가로 녹시율 개선 방안 - 중국 쓰촨성(四川省) 청두시(成都市)을 중심으로 -)

  • Hou, ShuJun;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.61-74
    • /
    • 2023
  • The concept of "green infrastructure" emphasizes the close relationship between natural and urban social systems, thereby providing services that protect the ecological environment and improve the quality of human life. The Green View Index(GVI) is an important indicator for measuring the supply of urban green space and contains more 3D spatial elements concerning the green space ratio. This study focused on an area within the Third Ring Road in the city of Chengdu, Sichuan Province, China. The purposes of this study were three-fold. First, this study analyzed the spatial distribution characteristics of the GVI in urban streets and its correlation with the urban park green space system using Street View image data. Second to analyze the characteristics of low GVI streets were analyzed. Third, to analyze the connectivity between road traffic and street GVI using space syntax were analyzed. This study found that the Street GVI was higher in the southwestern part of the study area than in the northeastern part. The spatial distribution of the street GVI correlated with urban park green space. Second, the street areas with low GVI are mainly concentrated in areas with dense commercial facilities, areas with new construction, areas around elevated roads, roads below Class 4, and crossroads areas. Third, the high integration and low GVI areas were mainly concentrated within the First Ring Road in the city as judged by the concentration of vehicles and population. This study provides base material for future programs to improve the GVI of streets in Chengdu, Sichuan Province.

Detection of Small Green Space in an Urban Area Using Airborne Hyperspectral Imagery and Spectral Angle Mapper (분광각매퍼 기법을 적용한 항공기 탑재 초분광영상의 소규모 녹지공간 탐지)

  • Kim, Tae-Woo;Choi, Don-Jeong;We, Gwang-Jae;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.88-100
    • /
    • 2013
  • Urban green space is one of most important aspects of urban infrastructure for improving the quality of life of city dwellers as it reduces the heat island effect and is used for recreation and relaxation. However, no systematic management of urban green space has been introduced in Korea as past practices focused on efficient development. A way to calculate the amount of green space needed to complement an urban area must be developed to preserve urban green space and to determine 'regulations determining the total amount of greenery'. In recent years, various studies have quantified urban green space and infrastructure using remotely sensed data. However, it is difficult to detect a myriad small green spaces in a city effectively when considering the spatial resolution of the data used in existing research. In this paper, we quantified small urban green spaces using CASI-1500 hyperspectral imagery. We calculated MCARI, a vegetation index for hyperspectral imagery, to evaluate the greenness of small green spaces. In addition, we applied image-classification methods, including the ISODATA algorithm and Spectral Angle Mapper, to detect small green spaces using supervised and unsupervised classifications. This could be used to categorize land-cover into four classes: unclassified, impervious, suspected green, and vegetation green.