• Title/Summary/Keyword: Uranium Cycle

Search Result 157, Processing Time 0.02 seconds

Investigation of Pyroprocessing Concept and Its Applicability as an Alternative Technology for Conventional Fuel Cycle (고온전해분리 기술의 개요 및 기존 핵연료주기 대체 기술로서의 적합성 검토)

  • Yoo, Jae-Hyung;Lee, Byung-Jik;Lee, Han-Soo;Kim, Eung-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.283-295
    • /
    • 2007
  • The technical feasibility of a pyroprocessing of PWR spent fuels to recover nuclear fuel materials, uranium and transuranic elements group(TRU), was examined in this study. Also its applicability as a new fuel cycle technology in terms of non-proliferation was investigated. First, various unit processes were combined to a pyroprocess. Then the flow aspects of such materials of issue as uranium, transuraniums, rare earth, noble metals and heat generating elements were examined on the flowsheet, which was obtained by the assumptions on the basis of various experimental results in this work or separation data collected from literatures. Consequently, the calculated results of the material balance for the whole process showed that uranium and TRU could be recovered as products by 98.0 % and 97.0 %, respectively, from a PWR spent fuel while removing the other elemental groups into radioactive wastes. On the one hand, the TRU product was found to emit a considerable amount of ${\gamma}$-ray as well as neutrons favorably contributing to the strategy of proliferation resistance.

  • PDF

Effect of process parameters on the recovery of thorium tetrafluoride prepared by hydrofluorination of thorium oxide, and their optimization

  • Kumar, Raj;Gupta, Sonal;Wajhal, Sourabh;Satpati, S.K.;Sahu, M.L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1560-1569
    • /
    • 2022
  • Liquid fueled molten salt reactors (MSRs) have seen renewed interest because of their inherent safety features, higher thermal efficiency and potential for efficient thorium utilisation for power generation. Thorium fluoride is one of the salts used in liquid fueled MSRs employing Th-U cycle. In the present study, ThF4 was prepared by hydro-fluorination of ThO2 using anhydrous HF gas. Process parameters viz. bed depth, hydrofluorination time and hydrofluorination temperature, were optimized for the preparation of ThF4 in a static bed reactor setup. The products were characterized with X-Ray diffraction and experimental conditions for complete conversion to ThF4 were established which also corroborated with the yield values. Hydrofluorination of ThO2 at 450 ℃ for half an hour at a bed depth of 6 mm gave the best result, with a yield of about 99.36% ThF4. No unconverted oxide or any other impurity was observed. Rietveld refinement was performed on the XRD data of this ThF4, and Chi2 value of 3.54 indicated good agreement between observed and calculated profiles.

Optimization of the Korean Nuclear Fuel Cycle Using Linear Programming (선형계획법을 이용한 한국 원전연료주기의 최적화)

  • Kim, J.I.;Chae, K.N.;Lee, B.W.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.721-729
    • /
    • 1995
  • The Korean optimal nuclear fuel cycle strategy from the year 2000 to 2030 is derived using linear programming. The fuel cycle cost, the cost uncertainty, and the natural uranium consumption are used as the criteria for the optimization. These objectives are compromised by fuzzy decision-making technique which maximizes the minimum degree of satisfaction among the three objectives. The options for the back-end fuel cycle are direct disposal, reprocessing, and DUPIC. The optimal fuel cycle strategy of Korea is to start reprocessing in around 2010 and increase its capacity with the maximum of 800 tHM in around 2025, and to star DUPIC processing in 2025. The cot uncertainty and the natural uranium consumption of the optimal fuel cycle strategy are reduced by 7.1% and 6.1%, respectively, at the cost penalty of 5.4% compared with the cost-only optimal solution.

  • PDF

Implementation of a Dry Process Fuel Cycle Model into the DYMOND Code

  • Park Joo Hwan;Jeong Chang Joon;Choi Hangbok
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.175-183
    • /
    • 2004
  • For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada deuterium uranium (CANDU) reactor, direct use of spent pressurized water reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-though and DUPIC fuel cycles.

Radioactive Waste Issues Related to Production of Fission-based 99Mo by using Low Enriched Uranium (LEU) (저농축 우라늄을 사용하는 핵분열 몰리브덴-99 생산에 관련된 방사성 폐기물 연구)

  • Hassan, Muhmood ul;Ryu, Ho Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.155-161
    • /
    • 2015
  • Technetium-99m (99mTc) is an important, short-lived decay product of molybdenum-99 (99Mo), and it is considered the backbone of the modern nuclear diagnostic procedures. Since fission of 235U is the main source of production of 99Mo, either highly-enriched uranium (HEU) targets or low-enriched uranium (LEU) targets are irradiated in the research reactors. The use of LEU targets is being promoted by the international community to avoid the proliferation issues linked with the use of HEU. In order to define the waste management strategy at the planning stage of establishment of an LEU based 99Mo production facility, the impact of the use of LEU targets on the radioactive waste stream of the 99Mo production facility was analyzed. Because the volume of uranium waste is estimated to increase six times, the use of high uranium density targets and the utilization of hot isostatic pressing were recommended to reduce the increased waste volume from the use of LEU based targets.

Conceptual Design of a Cover System for the Degmay Uranium Tailings Site (Degmay 우라늄광산 폐기물 부지 복원을 위한 복토층 개념설계)

  • Saidov, Vaysidin;Kessel, David S.;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.189-200
    • /
    • 2016
  • The Republic of Tajikistan has ten former uranium mining sites. The total volume of all tailings is approximately 55 million tonnes, and the covered area is more than 200 hectares. The safe management of legacy uranium mining and tailing sites has become an issue of concern. Depending on the performance requirements and site-specific conditions (location in an arid, semiarid or humid region), a cover system for uranium tailings sites could be constructed using several material layers using both natural and man-made materials. The purpose of this study is to find a feasible cost-effective cover system design for the Degmay uranium tailings site which could provide a long period (100 years) of protection. The HELP computer code was used in the evaluation of potential Degmay cover system designs. As a result of this study, a cover system with 70 cm thick percolation layer, 30 cm thick drainage layer, geomembrane liner and 60 cm thick barrier soil layer is recommended because it minimizes cover thickness and would be the most cost-effective design.

Improvement of Pilot-scale Electrokinetic Remediation Technology for Uranium Removal (우라늄 제거를 위한 실험실 규모 동전기 장치의 개선 방안)

  • Park, Hye-Min;Kim, Gye-Nam;Kim, Seung-Soo;Kim, Wan-Suk;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • The original pilot-scale electrokinetic equipment suitable to soil contamination characteristics of Korean nuclear facility sites was manufactured for the remediation of soil contaminated with uranium. During the experiment with the original electrokinetic equipment, many metal oxides were generated and were stuck on the cathode plate. The uranium removal capability of the original electrokinrtic equipment was almost exhausted because the cathode plate covered with metal oxides did not conduct electricity in the original electrokinetic equipment. Therefore, the original electrokinetic equipment was improved. After the remediation experience for 25 days using the improved electrokinetic remediation equipment, the removal efficiency of uranium from the soil was 96.8% and its residual uranium concentration was 0.81 Bq/g. When the initial uranium concentration of soil was about 50 Bq/g, the electrokinetic remediation time required to remediate the uranium concentration below clearance concentration of 1.0 Bq/g was about 34 days. When the initial uranium concentration of soil was about 75 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 42 days. When the initial uranium concentration of soil was about 100 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 49 days.

Improvement of Removal Characteristics of Uranium by the Immobilization of Diphosil Powder onto Alginate Bed (다이포실 분말수지의 비드화에 의한 우라늄 제거특성 개선)

  • Kim Kil-Jeong;Shon Jong-Sik;Hong Kwon-Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.133-138
    • /
    • 2006
  • Chemical wastes containing small amounts of uranium can not be disposed of them after treatment as an industrial waste, because the uranium concentration in the final dry cake exceeds the exemption level. Especially for the removal of uranium in this study, the method for immobilizing Diphosil powder within alginate beads is adopted to make a bead form from a powdered resin. Sodium alginate bead itself showed a capability to uptake uranium to above 60%, but the value was decreased to below 30% after equilibrium. The adsorption rate of uranium increased with the increasing content of Diphosil in the sodium alginate bead. Diphosil resin itself showed very fast uptake of uranium from early stages, and then the rates were leveled off. Diphosil bead showed an improved capability to uptake uranium considering the pure Diphosil content in the composite bead, and provide a considerable potential for further applications of a continuous process by using Diphosil as a bead form.

  • PDF

Study of the Formation of Eutectic Melt of Uranium and Thermal Analysis for the Salt Distillation of Uranium Deposits (우라늄 전착물의 염증류에 대한 우라늄 공정(共晶) 형성 및 열해석 연구)

  • Park, Sung-Bin;Cho, Dong-Wook;Hwang, Sung-Chan;Kang, Young-Ho;Park, Ki-Min;Jun, Wan-Gi;Kim, Jeong-Guk;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • Uranium deposits from an electrorefining process contain about 30% salt. In order to recover pure uranium and transform it into an ingot, the salts have to be removed from the uranium deposits. Major process variables for the salt distillation process of the uranium deposits are hold temperature and vacuum pressure. Effects of the variables on the salt removal efficiency were studied in the previous study[1]. By applying the Hertz-Langmuir relation to the salt evaporation of the uranium deposits, the evaporation coefficients were obtained at the various conditions. The operational conditions for achieving above 99% salt removal were deduced. The salt distilled uranium deposits tend to form the eutectic melt with iron, nickel, chromium for structural material of salt evaporator. In this study, we investigated the hold temperature limitation in order to prevent the formation of the eutetic melt between urnaium and other metals. The reactions between the uranium metal and stainless steel were tested at various conditions. And for enhancing the evaporation rate of the salt and the efficient recovery of the distilled salt, the thermal analysis of the salt distiller was conducted by using commercial CFX software. From the thermal analysis, the effect of Ar gas flow on the evaporation of the salt was studied.

PROSPECTIVE ON DEVELOPMENT OF NUCLEAR POWER AND THE ASSOCIATED FUEL CYCLE IN CHINA

  • Gu Zhongmao;Liu Changxin;Fu Manchang
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.156-164
    • /
    • 2005
  • The challenges China is facing in energy security are briefly discussed. Then, the development of nuclear power in China in the first half of 21 st century is envisioned, and it is expected that Generation-3 PWR nuclear power plants (NPPs) would be the leading units of nuclear power in the coming $30\~40$ years. As part of the nuclear power program, the R&D work on nuclear fuel cycle is generally proposed.

  • PDF