• 제목/요약/키워드: Uranium Content

검색결과 108건 처리시간 0.02초

몽골의 우라늄자원 (Uranium Resources of Mongolia)

  • 문건주;박중권
    • 자원환경지질
    • /
    • 제27권6호
    • /
    • pp.601-609
    • /
    • 1994
  • Uranium resources of Mongolia are generally confined to sediments deposited during Jurassic to Cretaceous volcanism. Territory of Mongolian uranium deposits is divided into four districts as follows; Mongol-Priargun, Gobi-Tamtsag, Hentii-Dauer, North-Mongolian. Potential uranium deposits were discovered by Airborne Gamma ray Spectrometric Survey(AGSM). One of them, Haraat deposit, which was interested to us, has been under detailed survey for exploitation by one of American companies, Concord company. The Erdes uranium mine is partly operated by about hundred Russian staffs at the open pit, while underground mining facilities such as the main hoist are almost closed. Ore minerals of the Erdes Mine are coffinite and pitchblende. Uranium content in ore ranges from 0.06% to 1%, averaging 0.2%. Ore reserves of uranium ore in the Dornod deposit including the Erdes Mine accounts 29,000 ton. It is reported that Uranium resources of Mongolia are 1,471,000 ton.

  • PDF

Basic characterization of uranium by high-resolution gamma spectroscopy

  • Choi, Hee-Dong;Kim, Junhyuck
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.929-936
    • /
    • 2018
  • A basic characterization of uranium samples was performed using gamma- and X-ray spectroscopy. The studied uranium samples were eight types of certified reference materials with $^{235}U$ enrichments in the range of 1-97%, and the measurements were performed over 24 h using a high-resolution and high-purity planar germanium detector. A general peak analysis of the spectrum and the $XK_{\alpha}$ region of the uranium spectra was carried out by using HyperGam and HyperGam-U, respectively. The standard reference sources were used to calibrate the spectroscopy system. To obtain the absolute detection efficiency, an effective solid angle code, EXVol, was run for each sample. Hence, the peak activities and isotopic activities were determined, and then, the total U content and $^{234}U$, $^{235}U$, and $^{238}U$ isotopic contents were determined and compared with those of the certified reference values. A new method to determine the model age based on the ratio of the activities of $^{223}Ra$ and $^{235}U$ in the sample was studied, and the model age was compared with the known true age. In summary, the present study developed a method for basic characterization of uranium samples by nondestructive gamma-ray spectrometry in 24 h and to obtain information on the sample age.

Effect of oxygen containing compounds in uranium tetrafluoride on its non-adiabatic calciothermic reduction characteristics

  • Gupta, Sonal;Kumar, Raj;Satpati, Santosh K.;Sahu, Manharan L.
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1931-1938
    • /
    • 2021
  • Uranium ingot is produced by metallothermic reduction of uranium tetrafluoride using magnesium or calcium as reductant. Presence of oxygen containing compounds viz. uranyl fluoride and uranium oxide in the starting uranium fluoride has a significant effect on the firing time, final temperature of the charge, slag-metal separation and hence the metal recovery. As reported in the literature, the maximum tolerable limit for uranyl fluoride in the UF4 is 2.5 wt% and limit for uranium oxide content is in the range 2-3 wt%. No theoretical or experimental basis is available till date for these limits. Analyses have been carried out in this study to understand the effect of UO2F2 concentration in the starting fluoride on the final temperature of the products and thus the reduction characteristics. UF4 having uranyl fluoride concentration, less than as well as more than 2.5 wt%, have been investigated. Thermodynamic calculations have been carried out to arrive at a general expression for the final temperature attained by the products during calciothermic reduction of UF4. Finally, an upper limit for the oxygen containing impurities has been estimated using the CaO-CaF2 phase diagram.

Salt Distiller With Mesh-covered Crucible for Electrorefiner Uranium Deposits

  • Kwon, S.W.;Lee, Y.S.;Kang, H.B.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 춘계학술논문요약집
    • /
    • pp.83-83
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. Distillation process was employed for the cathode processing. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. In this study, a mesh-covered crucible was investigated for the sat distillation of electrorefiner uranium deposits. A liquid salt separation step and a vacuum distillation step were combined for salt separation. The adhered salt in uranium deposits was efficiently removed in the mesh-covered crucible. The salt distiller was operated simply since repeated cooling - heating step was not necessary for the change of the crucible. The operation time could be reduced by the use of the mesh-covered crucible and the combined operation of the two steps. A method to preserve a vacuum level was proposed by double O-rings during the operation of the distiller with the mesh-covered crucible. After the salt distillation, the salt content was measured and was below 0.1wt% after the salt distillation. The residual salt after the salt distillation can be removed further during melting of uranium metal.

  • PDF

청원지역 지하수의 우라늄과 라돈의 산출 특성과 수리지화학 (Hydrogeochemistry and Occurrences of Uranium and Radon in Groundwater of in Chungwon, Korea)

  • 이병대
    • 한국환경과학회지
    • /
    • 제27권8호
    • /
    • pp.651-663
    • /
    • 2018
  • The hydrochemistry of groundwater from 47 wells in the Chungwon area, Korea was analyzed to examine the occurrence of natural radionuclides like uranium and radon. The range of Electrical Conductivity (EC) value in the study area was $67{\sim}1,404{\mu}S/cm$. In addition to the high EC value, the content of cations and anions also tends to increase. Uranium concentrations ranged from $ND{\sim}178{\mu}g/L$ (median value, $0.8{\mu}g/L$) and radon concentrations ranged from 80~12,900 pCi/L (median value, 1,250 pCi/L). Uranium concentrations in one well, that is 2.8% of the samples, exceeded $30{\mu}g/L$, which is the Maximum Contaminant Level (MCL) proposed by the US Environmental Protection Agency (EPA), based on the chemical toxicity of uranium. Radon concentrations in three wells, that is 6% of the samples, and one well, that is 2.8% of the samples, exceeded 4,000 pCi/L (AMCL of the US EPA) and 8,100 pCi/L (Finland's guideline level), respectively. Concentrations of uranium and radon related to geology of the study area show the highest values in the groundwater of the granite area. The uranium and radon contents in the groundwater were found to be low compared to those of other countries with similar geological settings. It is likely that the measured value was lower than the actual content due to the inflow of shallow groundwater by the lack of casing and grouting.

우라늄 정광의 용해/정제 및 핵연료 분말 가공공정에서 발생된 폐액의 처리에 관한 연구 (A Study on Treatment of Wastes from the Uranium Ore Dissolution/purification and Nuclear Fuel Powder Fabrication)

  • 정경채;황성태
    • 공업화학
    • /
    • 제8권1호
    • /
    • pp.99-107
    • /
    • 1997
  • 핵연료분말 변환공정 중 우라늄 정광의 용해/정제 및 가공공정에서 발생하는 폐액의 처리에 대한 연구가 수행되었다. 우라늄 정광의 용해/정제공정에서 발생된 폐액은 pH 1 이하의 강산성으로 AUC 분말 제조공정에서 발생된 폐액 중의 우라늄을 ADU 형태로 회수한 후 발생된 2차 여액 속의 미세 ADU 입자 용해를 위해 사용된다. 2차 여액 속의 미세 ADU 입자들의 용해를 위해 용해/정제 공정의 폐액을 사용해서 pH 4로 전처리한 후, lime을 이용하여 pH 9.2로 30분 정도 반응시킬 경우 여액 중의 우라늄 농도를 3ppm 이하로 처리할 수 있었다. 가공 폐액은 미세 oil droplet들이 emulsion 형태로 발생하며, 약 300ppm의 우라늄 농도를 나타내었다. 먼저, emulsion을 파괴시키는 방법은 질산을 가하여 급속가열시키는 것이 효과적이었다. Emulsion 파괴 후 1mole NaOH를 가하여 $Na_2U_2O_7$형태로 우라늄을 회수하였으며, pH11.5에서 최적 처리조건을 나타내었으나 최종 여액 중의 우라늄 농도는 5ppm을 나타냈다. 여액 중의 우라늄 농도를 최소화하기 위해 lime으로 처리하는 방법이 연구되었으며, 가공폐액을 직접 lime 처리하기 위해 4N 질산으로 emulsion을 파괴 시킨 후, pH 1.6에서 lime을 1.5g/100ml로 반응시킬 경우 여액 중의 우라늄 농도를 1ppm까지 낮출 수 있었다. 한편, 경수로형 분말 제조공정 중 우라늄 회수공정에서 발생된 폐액 중의 미량 우라늄은 NaOH를 가하여 우라늄을 침전시킨 결과, $Na{\cdot}U{\cdot}F{\cdot}NH_4$등이 혼합된 침전물이 얻어졌으며, 여과후 상등액에서는 우라늄은 감지할 수 없었다.

  • PDF

Adsorption of Uranium (VI) Ion on 1-Aza-12-Crown-4 Synthetic Resin with Styrene Hazardous Material

  • Kim, Joon-Tae
    • 통합자연과학논문집
    • /
    • 제6권2호
    • /
    • pp.104-110
    • /
    • 2013
  • 1-Aza-12-crown-4 macrocyclic ligand was combined with styrene (2th petroleum in 4th class hazardous materials) divinylbenzene copolymer having 1%, 2%, 3%, and 6% crosslinks by a substitution reaction, in order to synthesize resin. These synthetic resins were confirmed by chlorine content, elementary analysis and IR-spectrum. As the results of the effects of pH, equilibrium arrival time, crosslink of synthetic resin, and dielectric constant of a solvent on uranium ion adsorption for resin adsorbent, the uranium ion showed high adsorption at pH 3 or over and adsorption equilibrium of uranium ion was about 2 hours. In addition, adsorption selectivity for the resin in methanol solvent was the order of uranium ($UO_2{^{2+}}$) > iron ($Fe^{3+}$) > lutetium ($Lu^{3+}$) ions, adsorbability of the uranium ion was in the crosslinks order of 1%, 2%, 3%, and 6% was increased with the lower dielectric constant.

Restoration of the isotopic composition of reprocessed uranium hexafluoride using cascade with additional product

  • Palkin, Valerii;Maslyukov, Eugenii
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2867-2873
    • /
    • 2020
  • In reprocessed uranium, derived from an impoverished fuel of light-water moderated reactors, there are isotopes of 232, 234, 236U, which make its recycling remarkably difficult. A method of concentration of 235U target isotope in cascade's additional product was proposed to recover the isotopic composition of reprocessed uranium. A general calculation procedure is presented and a parameters' optimization of multi-flow cascades with additional products. For the first time a numeric model of a cascade that uses the cuts of partial flows of stages with relatively high separation factors was applied in this procedure. A novel computing experiment is carried out on separation of reprocessed uranium hexafluoride with providing a high concentration of 235U in cascade's additional product with subsequent dilution. The parameters of cascades' stages are determined so as to allow reducing the 232, 234, 236U isotope content up to the acceptable. It was demonstrated that the dilution of selected products by the natural waste makes it possible to receive a low enriched uranium hexafluoride that meets the ASTM C996-15 specification for commercial grade.

신보활석광산 주변에 형성된 우라늄 이상치에 관한 지화학적 연구 (I) -수리화학적 특성을 중심으로- (Geochemical Study on the Uranium Anormaly around the Shinbo Talc Mine (I) -In the Light of Hydrochemical Properties-)

  • 정재일;이무성;나춘기
    • 자원환경지질
    • /
    • 제31권2호
    • /
    • pp.101-110
    • /
    • 1998
  • The purpose of this study is to elucidate the source of U anormaly formed in stream water of the drainage system around the Shinbo talc mine area based on the hydrochemical properties of water masses including surface water and groundwater. The hydrochemical properties of water masses in the Shinbo talc mine area are divide into three types; Type I : $Ca(Mg)SO_4$ type with high U content as shown in the stream water flowout from the mine, Type II : $Ca(HCO_3)_2$ type with high U content as in deep groundwater, Type III : $Ca(HCO_3)_2$, type with low U content as in the other stream water and shallow groundwater. It is necessary to emphasize that in deducing the uranium source, a distinct discrimination between type I and type II is showed in their hydrothermal properties in spite of commonly having a high uranium content, which in turn means the occurrence of a different water-rock interaction processes between both type. All evidences suggest that type II groundwater have acted as a primary media in the transport of uranium and that, as the groundwater flows through the talc mineralization zone, water composition of type II was transformed into that of type I water as the results of a secondary water rock interaction process, caused by imposition of new mineralogically controlled thermodynamic constraints. Consequently, in the viewpoint of hydrochemical exploration, the investigation of the hydrologic circulation system and the hydrogeologic properties for the aquifer of type II groundwater shall be done first of all and will provide a crucial clue on tracing the uranium mineralization zone occurred in the Shinbo talc mine area.

  • PDF

Determination of Trace Uranium in Human Hair by Nuclear Track Detection Technique

  • Chung, Yong-Sam;Moon, Jong-Hwa;Zinaida En;Cho, Seung-Yeon;Kang, Sang-Hoon;Lee, Jae-Ki
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.225-230
    • /
    • 2001
  • The aim of this study is to describe a usefulness of nuclear analytical technique in assessing and comparing the concentration levels through the analysis of uranium using human hair sample in the field of environment. A fission track detection technique was applied to determine the uranium concentration in human hair. Hair samples were collected from two groups of people - a) workers not dealing with uranium directly, and b) workers possibly contaminated with uranium. The concentration of $^{235}$ U for the first group varied from <1 to 39 ng/g and the second group can be estimated up to the level of $\mu$g/g. Radiographs of heavy-duty work samples contained high dense “hot spots” along a single hair. After washing in acetone and distilled water, external contamination was not totally removed. Insoluble uranium compounds were not completely washed out. The (n, f)- radiography technique, having high sensitivity, and capable of getting information on uranium content at each point of a single hair, is an excellent tool for environmental monitoring.

  • PDF