• Title/Summary/Keyword: Upward Jet Flow

Search Result 18, Processing Time 0.029 seconds

A Flow Field Analysis of Compound Jets Modified at a 10 Degree Upward Angle ($10^{\circ}$상향분사된 혼합분류의 유동장 해석)

  • 박상규;이용호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.103-110
    • /
    • 2000
  • A two phase compound jet, which mixes pulverized solid particles with the air in the test section, is experimentally analyzed in this study. Two phase flow is jetted 10 degree upward in the primary jet, while the secondary jet utilizes the air only. The height difference between the primary and secondary central axises is 32.5mm. The velocity vector field, concentration field, and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. When the jet angle of the secondary jet goes into effect, the solid particle recirculation zone becomes larger. Also, solid particle concentration becomes more dense due to a velocity decrement of particles.

  • PDF

The Study on the Phenomenon of Heat Transfer on a Downward Isothermal Circular Surface by an Impinging of Upward Circular Nozzle Jet (상향 원형노즐 제트에 의한 하향 등온 원형평면에서의 열전달 현상에 관한 연구)

  • Lee, In Jae;Eom, Yong Kyoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.450-457
    • /
    • 2016
  • While many studies on the heat transfer effect of an impinging jet have been published, most studies focus on the downward impinging jet. This study investigates the impinging jet heat transfer phenomenon when water at a temperature of $24^{\circ}C$ impinges on the downward isothermal circular plate at 60, 70, and $80^{\circ}C$ and when the upward round jet nozzle is 4, 6, and 8 mm diameter with a flow rate 3.6, 4.6, and 5.6 L/min, respectively, and when the ratio of the nozzle clearance/nozzle diameter (H/D) is 1. The results showed that, as the nozzle diameter decreases, the heat transfer coefficient increases at a constant flow rate. The correlation equation of $Nu_r$, $Pr_r$, and $Re_{jg}$ is obtained in the impinging and constant velocity flow region $(Nu_r/Pr^{0.4}_r)Dr=4.6[Re_{jg}(r/R_c)Dr]^{0.8}$ at all flow rates, in the deceleration and falling flow regions $(Nu_r/Pr^{0.4}_r)Dr=42.7{\mid}Re_{jg}(r/R_c)Dr-345.7{\mid}^{0.3}$ at 3.6 L/min, $(Nu_r/Pr^{0.4}_r)Dr=92.4{\mid}Re_{jg}(r/R_c)Dr-16.8{\mid}^{0.2}$ at 4.6 L/min, and $(Nu_r/Pr^{0.4}_r)Dr=322.4{\mid}Re_{jg}(r/R_c)Dr-536.2{\mid}^{0.01}$ at 5.6 L/min.

CFD ANALYSIS OF TURBULENT JET BEHAVIOR INDUCED BY A STEAM JET DISCHARGED THROUGH A VERTICAL UPWARD SINGLE HOLE IN A SUBCOOLED WATER POOL

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.382-393
    • /
    • 2010
  • Thermal mixing by steam jets in a pool is dominantly influenced by a turbulent water jet generated by the condensing steam jets, and the proper prediction of this turbulent jet behavior is critical for the pool mixing analysis. A turbulent jet flow induced by a steam jet discharged through a vertical upward single hole into a subcooled water pool was subjected to computational fluid dynamics (CFD) analysis. Based on the small-scale test data derived under a horizontal steam discharging condition, this analysis was performed to validate a CFD method of analysis previously developed for condensing jet-induced pool mixing phenomena. In previous validation work, the CFD results and the test data for a limited range of radial and axial directions were compared in terms of profiles of the turbulent jet velocity and temperature. Furthermore, the behavior of the turbulent jet induced by the steam jet through a horizontal single hole in a subcooled water pool failed to show the exact axisymmetric flow pattern with regards to an overall pool mixing, whereas the CFD analysis was done with an axisymmetric grid model. Therefore, another new small-scale test was conducted under a vertical upward steam discharging condition. The purpose of this test was to generate the velocity and temperature profiles of the turbulent jet by expanding the measurement ranges from the jet center to a location at about 5% of $U_m$ and 10 cm to 30 cm from the exit of the discharge nozzle. The results of the new CFD analysis show that the recommended CFD model of the high turbulent intensity of 40% for the turbulent jet and the fine mesh grid model can accurately predict the test results within an error rate of about 10%. In this work, the turbulent jet model, which is used to simply predict the temperature and velocity profiles along the axial and radial directions by means of the empirical correlations and Tollmien's theory was improved on the basis of the new test data. The results validate the CFD model of analysis. Furthermore, the turbulent jet model developed in this study can be used to analyze pool thermal mixing when an ellipsoidal steam jet is discharged under a high steam mass flux in a subcooled water pool.

The Study of Heat Transfer on a Heated Circular Surface by an Impinging, Circular Water Jet with the Low Velocity Against the Direction of Gravity (중력방향과 대향류인 저속 원형노즐 제트충돌에 의한 원형평판에서의 열전달 현상)

  • Kim, Ki-Tae;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.983-991
    • /
    • 2009
  • The heat transfer phenomenon was investigated in this study when a circular water jet with low velocity flows to the downward facing heated circular plate and against the direction of gravity. Data are presented for jet flow rate between 0.23 and 2.3 l/min, jet fluid temperature of 24$^{\circ}C$, heat fluxes between 345 and 687 W/m$^2$, H/D=1, 2 and 3 with a single round jet diameter 2mm. The effects of heat flux, jet velocity and H/D on the local heat transfer are investigated in for the various regions of jet impingement. The local heat transfer distributions are analyzed based on the visualization of jet flow field. Data from experimental results are correlated by expressions of the form Nu=0.01$Re^{0.58}{\cdot}Pr^{0.4}$.

The Analytic Analysis of Suppressing Jet Flow at Guide Tube of Circular Irradiation Hole in HANARO (하나로 원형 조사공의 안내관 제트유동 억제에 대한 해석)

  • Park Y. C.;Wu S. I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.214-219
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth, open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. The HANARO is composed of inlet plenum, grid plate, core channel with flow tubes and chimney. The reactor core channel is located at about twelve m (12 m) depth of the reactor pool and cold by the upward flow that the coolant enters the lower inlet of the plenum, rises up through the grid plate and the core channel and exit through the outlet of chimney. A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be Quickly raised up to the top of the chimney through the guide tube by jet flow. This paper is described an analytical analysis to study the flow behavior through the guide tube under reactor normal operation and unloading the target. As results, it was conformed through the analysis results that the flow rate, about fourteen kilogram per second (14 kg/s) suppressed the guide tube jet and met the design cooling flow rate in a circular flow tube, and that the fission moly target cooling flow rate met the minimum flow rate to cool the target.

  • PDF

THE ANALYTIC ANALYSIS OF SUPPRESSING JET FLOW AT GUIDE TUBE OF CIRCULAR IRRADIATION HOLE IN HANARO (하나로 원형 조사공의 안내관 제트유동 억제에 대한 해석)

  • Park Y.C.;Wu S.I.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • The HANARO, a multi-purpose research reactor of 30 MWth, open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. The HANARO is composed af inlet plenum, grid plate, core channel with flow tubes and chimney. The reactor core channel is located at about twelve meters (12 m) depth of the reactor pool and cooled by the upward flow that the coolant enters the lower inlet of the plenum, rises up through the grid plate and the core channel and comes out from the outlet of chimney. A fission moly guide tube is extended from the reactor core to the top of the reactor chimney for easily loading a fission moly target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by jet flow. This paper describes an analytical analysis that is the study of the flow behavior through the guide tube under reactor normal operation and unloading the target. As results, it was conformed through the analysis results that the flow rate, reduced to about fourteen kilogram per second (14 kg/s) from the original flow rate of sixteen point three kilogram per second (16.3 kg/s) did not show the guide tube jet.

The Study of Heat Transfer on a Isothermal Circular Surface by an Impinging, Circular Water Jets with the Low Velocity Against the Direction of Gravity (중력방향과 대향류인 저속 원형노즐제트 충돌에 의한 일정 두께 하향 등온원형평판에서의 열전달 현상)

  • Eom, Yongkyoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.449-458
    • /
    • 2014
  • The heat transfer phenomenon was investigated in this study when a single round water jet with the low velocity and against the direction of gravity flows to the downward facing Isothermal of definite thickness circular plate. Experimental investigation is performed for a single round jet diameter 4mm, 6mm, and 8mm with the jet velocity 2.4m/s and jet fluid temperature of $24^{\circ}C$, varied the ratio of nozzle clearance/nozzle diameter (H/D)1, 2, 3, 6, and 8, on circular plate isothermal condition with $85^{\circ}C$. The local convection heat transfer coefficient distributions are analyzed based on the visualization of jet flow field. The effects of the diameter of Nozzle, the ratio of H/D and the ratio of nozzle diameter/circular plate diameter on heat transfer phenomenon are investigated. As a results of experiment is obtained correlation equation, $Nu_r=3.18Re_r^{0.55}Pr_r^{0.4}$.

Flow Characteristics for Guide Tube of Circular Irradiation Hole in HANARO (하나로 원형 조사공의 안내관 유동특성)

  • Park, Y.C.;Wu, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1835-1840
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth, open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. The HANARO is composed of inlet plenum, grid plate, core channel with flow tubes and chimney. The reactor core channel is located at about twelve meters (12 m) depth of the reactor pool and cooled by the upward flow that the coolant enters the lower inlet of the plenum,. rises up through the grid plate and the core channel and comes out from the outlet of chimney. A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by a jet flow. This paper describes an analytical analysis that is the study of the flow behavior through the guide tube under reactor normal operation and unloading the target. As results, it was conformed through the analysis results that the guide jet is suppressed under the top of the chimney after modifying the orifice diameter of 37.5 mm to 31 mm.

  • PDF

An Experimental Study Improving Ventilation of Container Ship Hold Using Horizontal Upward Jet Duct (수평 상향 분사 덕트를 이용한 컨테이너선 화물창 환기 개선에 대한 실험적 연구)

  • Park, Il-Seouk;Park, Sang-Min;Ha, Ji-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.236-245
    • /
    • 2006
  • The ventilation performance for the various venting duct arrays has been experimentally compared in the scaled model of the container hold. Most container ships have the ventilation duct system to remove effectively the condensing heat released from container refrigerator. The existing duct system is vertically installed and basically has the number of duct as many as the columns of reefer container stack. In this study, to make up for the weak points having stagnantly hot legions in the centered area of container hold for the present system, the horizontal upward jotting duct system was proposed and proved by temperature rising tests on the scaled model. In this paper, the expected flow regimes and the thermal and hydrodynamic analogies as well as the measured temperature distributions in a hold for various duct types and heat released rates are deeply discussed.

Experimental Study on Flow Change at Downstream of Stepped Drop Structure (계단형 낙차공 하류 흐름변화에 대한 실험연구)

  • Yeo, Hong-Koo;Kang, Joon-Gu;Choi, Nam-Jeong;Kim, Sung-Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1889-1893
    • /
    • 2008
  • 본 연구에서는 완경사 계단형 낙차공에서 하류수심 변화에 따른 도수 형태의 변화와 WTF 흐름 특성에 대한 분석을 수행하였다. 일정한 유량에서 하류수위를 증가시키면 도수 형태가 달라지는데 특히 계단 끝단에서 완전도수, 잠김도수(B점프), downward curved jet, upward curved jet, wave type flow(WTF)가 차례로 나타났다. 잠김도수에서는 표면 롤러 현상이 관찰되었고 curved jet에서는 큰 유속 감세 없이 파가 하류까지 전달되었다. WTF에서는 사류흐름이 바닥 recirculation 구역의 영향으로 변형되면서 wave 형태의 도수를 발생시켰다. 하류수위를 점점 증가 시키면 도수의 발생 위치가 계단 위쪽으로 이동하며 잠김도수와 WTF가 번갈아가며 발생하였다. 하류수위가 높아질수록 도수의 규모는 작아졌으며 표면 롤러도 미약해지는 경향을 보였다. 세 가지 유량조건에 따른 WTF의 규모를 비교한 결과 유량이 증가할수록 WTF의 크기가 증가하였으며 무차원화한 WTF의 형상은 거의 비슷한 것으로 나타났다. 계단형 낙차공은 기존낙차공에서 발생하는 도수와 달리 WTF가 발생되므로 이에 대한 분석이 필요하다. WTF가 발생하는 구간의 수위는 하류수위보다 높아지기 때문에 하천 설계 시 하천 접합부의 조건(구수부지설치, 제방설치 등)에 따라 wave의 높이가 설계의 중요 인자로 고려되어야 할 것이다. WTF는 지금까지의 계단형 낙차공 설계 시 고려되지 못한 부분으로서 차후에 계단형 구조물 또는 계단식 변형 구조물 설계 시 주요 자료로 활용 될 것이다.

  • PDF