Santos, Livia Scheunemann dos;Oliveira, Antonio Costa de
Journal of Crop Science and Biotechnology
/
제10권2호
/
pp.64-72
/
2007
Iron is an important micronutrient for plants. Iron metabolism is a complex mechanism under a delicate balance. Iron metabolism represents two major problems for plants: deficiency as a consequence of solubility problems and toxicity due to excess solubility in anaerobic conditions. In the last few years, new genes have been discovered that influence iron uptake, transport and storage. Irrigated rice is exposed to high levels of $Fe^{II}$, normally rare in aerobic soil conditions. The implications of altering iron uptake rates and the effects of newly discovered genes are discussed.
Objectives: The aim of this study was to evaluate the effects of Hwanggi-tang on glucose digestion, uptake, and metabolism in murine C2C12 myotubes. Methods: Hwanggi-tang was prepared according to the Dong-ui-bo-gam (≪東醫寶鑑≫) prescription by 70% ethanol extraction. The effect on glucose digestion was examined by determining the inhibitory effect of Hwanggi-tang on α-glucosidase activity. We also compared and verified the gene and protein expression of genes related to glucose uptake in C2C12 myotubes treated with Hwanggi-tang or insulin. Glucose metabolism was assessed by the expression levels of associated enzymes. Results: Hwanggi-tang caused a dose-dependent inhibition of α-glucosidase activity, induced glucose uptake by activation of the PI3K/Akt/mTOR pathway in the insulin signaling pathway, and promoted glucose oxidation and β-oxidation. Conclusions: Hwanggi-tang exerts an anti-diabetic effect on murine myotubes by inhibiting glucose digestion and inducing glucose uptake and consumption.
Zhu, Shuang;Park, Soyoung;Lim, Yeseo;Shin, Sunhye;Han, Sung Nim
Nutrition Research and Practice
/
제10권5호
/
pp.477-486
/
2016
BACKGROUND/OBJECTIVES: Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS: Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS: In intestine, significantly lower Cd36 mRNA expression (P<0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P<0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS: PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice.
A suitable supply of mineral elements into shoot via a root system from growth media makes plants favorable growth and yield. The shortage or surplus of minerals directly affects overall physiological reactions to plants and, especially, strongly influences carbohydrate metabolism as a primary response. We have studied mineral uptake and synthesis and translocation of soluble carbohydrates in N, P or K-deficient tomato plants, and examined the interaction between soluble carbohydrates and mineral elements. Four-weeks-old tomato plants were grown in a hydroponic growth container adjusted with suboptimal N ($0.5mmol\;L^{-1}\;Ca(NO_3)2{\cdot}4H_2O$ and $0.5mmol\;L^{-1}\;KNO_3$), P ($0.05mmol\;L^{-1}\;KH_2PO_4$), and K ($0.5mmol\;L^{-1}\;KNO_3$) for 30 days. The deficiency of specific mineral element led to a significant decrease in its concentration and affected the concentration of other elements with increasing treatment period. The appearance of the reduction, however, differed slightly between elements. The ratios of N uptake of each treatment to that in NPK sufficient tomato shoots were 4 (N deficient), 50 (P deficient), and 50% (K deficient). The P uptake ratios were 21 (N deficient), 19 (P deficient), and 28% (K deficient) and K uptake ratios were 11 (N deficient), 46 (P deficient), and 7% (K deficient). The deficiency of mineral elements also influenced on carbohydrate metabolism; soluble sugar and starch was substantially enhanced, especially in N or K deficiency. In conclusion, mineral deficiency leads to an adverse carbohydrate metabolism such as immoderate accumulation and restricted translocation as well as reduced mineral uptake and thus results in the reduced plant growth.
To investigate the metabolism of various substrates in preimplantation bovine embryos, uptake of glucose and pyruvate, and lactate production were measured in single IVF-derived bovine embryos by a non-invasive method. When the embryos were incubated for 5 h in culture medium supplemented with 1 mM glucose and 0.4mM pyruvate as substrates at each developmental stage, glucose uptake was increased with more advanced developmental stages while pyruvate uptake was decreased. Total lactate producton of 2-cell embryos was significantly higher than that of blastocysts (p<0.05). Both of glucose uptake and lactate production in normal morulae produced in vitro was significantly high compared to the degenerated embryos(p<0.05). The results obtained in the study suggest that pyruvate as an exogenous substrate may be support in bovine embryos until 8-cell stage, whereas glucose may be effective as an energy source after morula stage. In addition, it was proven thatlactate was not effective as an energy source in preimplantation development of IVF-derived bovine embryos.
The effects of a high-fat diet and fasting on resting energy expenditure and energy substrate utilization were examined using the method of measuring whole body energy metabolism and oxygen uptake. Eight 4-week old male Sprague-Dawley rats were used for the high-fat diet experiment. Energy metabolism was measured using acrylic metabolic chambers over 24 hours. After 1-week of preliminary feeding, 4 rats were fed a chow diet, whereas the remaining 4 rats were fed a high-fat diet (HF) ad libitum, which contained 40% (w/w, calorie base 60%) more fat than that in the chow diet. The flow rate to measure energy metabolism inside the chamber was controlled at a mean of 3.5 L/min, and five chambers were subjected to measurement. One of the five chambers was used to correct errors by measuring the atmosphere. As a result of 5 weeks of control diet and high-fat diet feeding, body weight of the high-fat diet group tended to increase more than that in the control diet fed group, but the difference was not significant. Oxygen uptake and carbon dioxide production changed as time went on over the 24 hr. The respiratory exchange ratio also changed during the 24 hr, and the difference between the groups was significant. The control group showed significantly more carbohydrate oxidation than that of the high-fat diet fed group. A fasting experiment was conducted using six 7-week old Sprague-Dawley male rats. Energy metabolism measurements were performed using the same method as that used in the high-fat diet experiment; resting metabolism was measured prior to fasting, and a fasting condition began from 9:00 am the next day for 3 days to calculate energy metabolism. Both body weight and 24-hour oxygen uptake decreased significantly as a result of 3-day fasting. Total oxygen uptake in the first day decreased, and declined significantly on day 3 of fasting. Total 24-hour carbon dioxide production decreased significantly over the 3 days. The mean 24-hour respiratory exchange ratio decreased significantly. Additionally, energy expenditure during the dark period (20:00-08:00), which is the active period for rats, decreased significantly with fasting, whereas energy expenditure during the light period (08:00-20:00) did not increase by fasting.
Cancer cells are known to show increased rates of glycolysis metabolism. Based on this, PET studies using F-18-fluorodeoxyglucose have been used for the detection of primary and metastatic tumors. To account for this increased glucose uptake, a variety of mechanisms has been proposed. Glucose influx across the cell membrane is mediated by a family of structurally related proteins known as glucose transporters (Gluts). Among 6 isoforms of Gluts, Glut-1 and/or Glut-3 have been reported to show increased expression in various tumors. Increased level of Glut mRNA transcription is supposed to be the basic mechanism of Glut overexpression at the protein level. Some oncogens such as src or ras intensely stimulate Glut-1 by means of increased Glut-1 mRNA levels. Hexokinase activity is another important factor in glucose uptake in cancer cells. Especially hexokinase type II is considered to be involved in glycolysis of cancer cells. Much of the hexokinase of tumor cells is bound to outer membrane of mitochondria by the porin, a hexokinase receptor. Through this interaction, hexokinase may gain preferred access to ATP synthesized via oxidative phosphorylation in the inner mitochondria compartment. Other biologic factors such as tumor blood flow, blood volume, hypoxia, and infiltrating cells in tumor tissue are involved. Relative hypoxia may activate the anaerobic glycotytic pathway. Surrounding macrophages and newly formed granulation tissue in tumor showed greater glucose uptake than did viable cancer cells. To expand the application of FDG PET in oncology, it is important for nuclear medicine physicians to understand the related mechanisms of glucose uptake in cancer tissue.
myo-Inositol, a growth factor for Saccharomyces cerevisiae (S. cerevisiae), has been known to be incorporated into phosphatidylinositol (PI), which is a kind of phospholipid in the cell membrane, by a membrane-associated PI-synthesizing enzyme. The deficiency of myo-inositol in S. cerevisiae adversely affected the membrane structure and function. On the basis of biochemical functions of myo-inositol, the effect of deficiency of myo-inositol on the aerobic glucose metabolism was investigated by measuring specific oxygen uptake rate (Q$_{O2}$) used as an indicator representing the respiratory capacity of S. cerevisiae in batch and continuous cultures. The respiratory capacity of aerobic glucose metabolism in S. cerevisiae was also monitored after glucose pulse-addition in a continuous culture (D=0.2, 1/hr), in which glucose was utilized through respiratory metabolism. The deficiency of myo-inositol was found to lead to both the decrease of the maximum specific oxygen uptake rate (Q$_{O2max}$) observed from the batch as well as in the continuous culture experiment and the decrease of the respiratory capacity of aerobic glucose metabolism of S. cerevisiae determined from the glucose pulse-addition experiment, in which the glucose flux into respiratory and fermen- tative metabolism was quantitatively analyzed.
Serotonin, a biogenic amine widely found in many organisms, functions as both a neurotransmitter and hormone. Although serotonin is involved in various physiological processes, this study aimed to review its role in energy metabolism. Given that serotonin cannot cross the blood-brain barrier and is synthesized by two different isoforms of tryptophan hydroxylase in the central nervous system (CNS) and peripheral tissues, it is reasonable to assume that serotonin in the CNS and peripheral tissues functions independently. Recent studies have demonstrated how serotonin influences energy metabolism in metabolic target organs such as the intestines, liver, pancreas, and adipose tissue. In summary, serotonin in the CNS induces satiety and appetite suppression, stimulates thermogenesis, and reduces body weight. Conversely, serotonin in the periphery increases intestinal motility, stimulates gluconeogenesis in the liver, suppresses glucose uptake by hepatocytes, promotes fat uptake by liver cells, stimulates insulin secretion while suppressing glucagon secretion in the pancreatic islets, promotes lipogenesis in white adipose tissue, inhibits lipolysis and browning of white adipose tissue, and suppresses thermogenesis in brown adipose tissue, thereby storing energy and increasing body weight. However, considering that most experimental results were obtained using mice and conducted under specific nutritional conditions, such as high-fat diets, whether serotonin acts in the same way in humans, whether it will act similarly in individuals with normal versus obese weights, and whether its effects vary depending on the type of food consumed, remain unknown.
Certain basic characteristics of choline uptake in nerve terminals were studied with synaptosomes from rat hippocampus. Synaptosomal $[^3H]$-choline uptake was clarified as specific and high affinity by low Km value(2.2 uM), Na+-dependency and high sensitivity to hemicholinium-3, a competitive inhibitor of choline uptake. Choline uptake into synaptosomes was linearlys related to Na+ concentration and membrane potential. Extracellular Ca2+ modulated the choline uptake, but probably not through increase of intracellular $Ca^{2+}$, because this modulation was not affected the by high $K^+$-depolarization. EGTA (2mM) added for $Ca^{2+}$-free condition had a peculiar effect of decreasing choline uptake. These results suggest that Ca2+ may play an important role in regulating the metabolism of acetylcholine in the nerve terminals directly through the increase of acetylcholine release.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.