• Title/Summary/Keyword: Upstream Fuel Injection

Search Result 27, Processing Time 0.019 seconds

Experimental Study on Upstream Fueled Cavity Flame-Holder Scramjet Engine (상류 분사 공동 화염 지지부를 가지는 스크램제트 엔진에 관한 실험적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2006
  • The model cavity scramjet engine experiments are carried out using T3 free-piston shock tunnel. Upstream hydrogen fuel is injected before the cavity with different injection pressure. OH planar laser-induced fluorescence is used to investigate the combustion zone and piezoelectric pressure transducers are used to define the pressure rise due to the combustion. Main combustion region is a mixing layer which is between air and fuel. Also high OH fluorescence signal is appeared in the shear layer above the cavity in high equivalence ratio. From the OH signal in the cavity, this fuel injection system can be a role as a flame-holder.

  • PDF

Experimental Study on Upstream Fueled Cavity Flame-Holder Scramjet Engine (상류 분사 공동 화염 지지부를 가지는 스크램제트 엔진에 관한 실험적 연구)

  • Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.;Jeong, Eun-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.197-204
    • /
    • 2006
  • The model cavity scramjet engine experiments are carried out using T3 free-piston shock tunnel. Upstream hydrogen fuel is injected before the cavity with different injection pressure. OH planar laser-induced fluorescence is used to investigate the combustion zone and piezoelectric pressure transducers are used to define the pressure rise due to the combustion. Main combustion region is a mixing layer which is between air and fuel. Also high OH fluorescence signal is appeared in the shear layer above the cavity in high equivalence ratio. From the OH signal in the cavity, this fuel injection system can be a role as a flame- holder.

  • PDF

Numerical Simulation on Equivalence Ratio Fluctuation at the Fuel Injection Hole with respect to Pressure Fluctuation in a Combustion Chamber (연소실내의 압력 변동에 따른 연료 분사구에서의 당량비 변동에 관한 수치해석)

  • Kim, Hyeon-Jun;Hong, Jung-Goo;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.27-35
    • /
    • 2006
  • It has been observed in experiments that combustion instability of low frequency (${\sim}$ 10Hz) results form the modulation of equivalence ratio at fuel injection hole when a pressure fluctuation propagates upwards along the channel of the burner under an unchoked fuel flow condition. In this study, a commercial program was used to determine how the fuel flow rate changed with respect to the pressure, velocity of the fuel flow and the mass fraction in a choked and an unchoked condition. The calculation focus on the upstream of the dump plane to know how the forced pressure with the fuel injection conditions affects the modulation of the equivalence ratio. Therefore, it is found that pressure fluctuation leads to oscillation of mass flow rate and then results in equivalence ratio modulation under the unchoked fuel flow condition.

  • PDF

Numerical Simulation Study on Combustion Characteristics of Hypersonic Model SCRamjet Combustor

  • Won, Su-Hee;Eunju Jeong;Jeung, In-Seuck;Park, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.42-47
    • /
    • 2004
  • Air-fuel mixing and flame-holding are two important factors that have to be considered in the design of an injection system. Different injection strategies have been proposed with particular concern for rapid air-fuel mixing and flame-holding. Two representative injection techniques can be applied in a supersonic combustor. One of the simplest approaches is a transverse(normal) injection. The cavity flame holder, an integrated fuel injection/flame-holding approach, has been proposed as a new concept for flame holding and air-fuel mixing in a supersonic combustor. This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of a model scramjet engine combustor, where hydrogen is injected into a supersonic cross flow and a cavity. The combustion phenomena in a model scramjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, were observed around the separation region of the transverse injector upstream and the inside cavity. The results show that this flow separation generates recirculation regions which increase air-fuel mixing. Self-ignition occurs in the separation-freestream and cavity-fteestream interfaces.

  • PDF

Effect of Injection Pressure of Water-in-Oil Emulsified Fuel on the Combustion Characteristics (유화연료의 분사압력이 연소특성에 미치는 영향)

  • Hwang, S.H.;Bae, H.H.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.38-45
    • /
    • 2003
  • This study was carried on the combustion characteristics of a pure light oil and emulsified fuels at high-pressure injection in a spray combustion installation, The volume fractions of water in an emulsion were varied up to 30% and the injection pressures were 7.5, 100, 200, and $300kg_f/cm^2$. The concentrations of NOx and the average temperatures of flame were measured. And Images of OH radical using ICCD camera and instantaneous schlieren photography of flames were photographed. It was found that the temperature distribution of axial distance in the emulsified fuels was increased in the upstream and decreased in the down stream. The temperature distribution of radial distance was high at the peripheral regions of the spray in the upstream and at the central regions of spray in the downstream, The intensity of OH radical was denser at the water content 10% than at the pure light oil over the injection pressure $200kg_f/cm^2$.

  • PDF

A Study on the Correlation of Droplets Size and Velocity of the Pintle Type Gasoline Injector with Intermittent Injection (간헐적으로 분사되는 핀틀형 가솔린 분사기의 액적크기와 속도 상관관계에 관한 연구)

  • Kang, S.J.;Kim, W.T.
    • Journal of ILASS-Korea
    • /
    • v.3 no.1
    • /
    • pp.34-42
    • /
    • 1998
  • The correlation between the droplets size and the velocity are investigated for an intermittent spray of the pintle type fuel injector employed in a port injection gasoline engine. The analysis such as the mean droplet size, SMD, and velocity under the fixed injection period and varied fuel pressures are conducted utilizing PDPA systems. As results, the experimental data obtained, show that the larger droplet sizes. the higher velocities during the spray tip arrival time, and that at Z=70mm, r=8mm, both droplet sizes and velocities are peak. At the upstream, flow of droplets are dominated by injection pressure, which are more effected inertia force of droplets at the downstream of Z=70mm.

  • PDF

Numerical Simulation of the Effect of Pressure Fluctuation on the Modulation of Equivalence Ratio at the Fuel Injection Hole (압력변동이 연료 분사구에서의 당량비 변동에 미치는 영향에 관한 수치 해석)

  • Kim, Hyeon-Jun;Hong, Jung-Goo;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.292-299
    • /
    • 2007
  • In gas turbine technology, the flame stability is inherently greater in conventional diffusion type combustion over a wider range fuel to oxidizer ratio. However, premixed type combustion which has narrow flame stability region, is widely used due to environmental reason. It has been observed in experiments that combustion instability of low frequency (${\sim}10Hz$) results from the modulation of equivalence ratio at fuel injection hole when a pressure fluctuation propagates upwards along the channel of the burner under an unchoked fuel flow condition. In this study, a commercial program was used to determine how the fuel flow rate changed with respect to the pressure, velocity of the fuel flow and the mass fraction in a choked and an unchoked condition. The calculation focuses on the upstream of the dump plane to know how the forced pressure with the fuel injection conditions affects the modulation of the equivalence ratio. Therefore, it is found that pressure fluctuation leads to oscillation of mass flow rate and then results in equivalence ratio modulation under the unchoked fuel flow condition.

Numerical Investigation on Cavity-Enhanced-Supersonic Combustion Engine of Upstream Fuel Injection in Cavity (공동내부 연료분사방식 초음속 연소기의 수치해석 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.35-39
    • /
    • 2003
  • A numerical study is carried out to investigate combustion phenomena in a model SCRamjet engine, which has been experimentally studied at the Australian National University using a T3 free-piston shock tunnel. The Mach number is 3.8, the static pressure 110kPa and the static temperature 1100K in the main air flow. The fuel is hydrogen, which is injected in the cavity. Equivalence ratio is set to either 0.25 or 0.5 to access its effect on the fuel-air mixing combustion phenomena. The results show that the cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs near the point of fuel injection. The flame is anchored by the cavity and generates the precombustion shock on the step. For a high equivalence ratio, the recirculation zones are bigger and the flame is present throughout the combustor.

  • PDF

Characteristics of Flame-holding in a Scramjet Combustor with a Cavity

  • Tanaka, Hideyasu;Takahashi, Shuhei;Uriuda, Yoshitaka;Wakai, Kazunori;Tsue, Mitsuhiro;Kono, Michitaka;Ujll, Yasushige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.55-61
    • /
    • 2004
  • Numerical simulations were conducted in a rectangular scramjet combustor with a cavity and/or a step in order to investigate their performances for flame-holding. Flow structures and OH radical profiles in the cavity and the step were calculated. The calculated results showed that the cavity generated a larger recirculation zone than the step that had the same depth. Additionally, the combustor with a cavity could make a large low-velocity area than the combustor with a step. The cavity performance was determined by its depth and length. The cavities with too large or too short length did not work effectively, and a certain aspect ratio showed high performance for flame-holding. There was a minimal depth under which the cavity did not work as flame-holder. The fuel injections upstream the cavity and inside the cavity were also tested to investigate the effects on the cavity performance. The result showed that the fuel injection inside the cavity reduced reaction areas and residence time. Therefore, the upstream injection was preferable to the inside injection.

  • PDF

Numerical Simulation Study on Supersonic Combustion using the Cavity (공동을 이용한 초음속 연소의 수치적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.255-260
    • /
    • 2005
  • To achieve efficient combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between the fuel and airstreams. The aim of the present numerical research is to investigate the flame holding and combustion enhancement. Additional fuel into the cavity prevents shear flow impingement on the trailing edge of the cavity. The high temperature freestream flow mixes with the cold hydrogen fuel that is injected into the cavity and raises the fuel temperature remarkably and become to start combustion. The high pressure in the cavity due to the cavity structure and combustion leads the hydrogen fuel to upstream. The shock in the cavity to be generated by the fuel injection joins together and reflects off the ceiling wall. This makes high pressure and low mach number region and makes a small recirculation in this region. This high stagnation temperature is nearly recovered in the shear layer in front of the cavity and leads to start combustion. In the downstream of the cavity, the wall pressure drops significantly. This means that the combustion phenomenon is diminished. Because fuel lumps at the trailing edge of the cavity then it spreads after the cavity so, in this region there is a strong expansion.

  • PDF