• Title/Summary/Keyword: Upregulation

Search Result 736, Processing Time 0.029 seconds

O-GlcNAcylation of NF-κB Promotes Lung Metastasis of Cervical Cancer Cells via Upregulation of CXCR4 Expression

  • Ali, Akhtar;Kim, Sung Hwan;Kim, Min Jun;Choi, Mee Young;Kang, Sang Soo;Cho, Gyeong Jae;Kim, Yoon Sook;Choi, Jun-Young;Choi, Wan Sung
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.476-484
    • /
    • 2017
  • C-X-C chemokine receptor 4 (CXCR4) stimulates cancer metastasis. NF-${\kappa}B$ regulates CXCR4 expression in cancer cells, and O-GlcNAc modification of NF-${\kappa}B$ promotes its transcriptional activity. Here, we determined whether CXCR4 expression is affected by O-GlcNAcylation of NF-${\kappa}B$ in lung metastasis of cervical cancer. We found elevated levels of O-linked-N-actylglucosamine transferase (OGT) and O-GlcNAcylation in cervical cancer cells compared to those in non-malignant epithelial cells and detected increased expression of NF-${\kappa}B$ p65 (p65) and CXCR4 in cervical cancer cells. Knockdown of OGT inhibited the O-GlcNAcylation of p65 and decreased CXCR4 expression levels in HeLa cells. Thiamet G treatment increased O-GlcNAcylated p65, which subsequently enhanced CXCR4 expression levels. Inhibition of O-GlcNAcylation by 6-Diazo-5-oxo-L-norleucine (DON) treatment decreased p65 activation, eventually inhibiting CXCR4 expression in HeLa cells. Lung tissues from mice engrafted with OGT-knockdown HeLa cells (shOGT) exhibited lower expression of Ki-67 and HPV E6 and E7 oncogenes compared to lung tissues from mice engrafted with control HeLa cells (shCTL). In addition, lung tissues from mice engrafted with shOGT cells exhibited lower p65 and CXCR4 immunoreactivity compared to tissues from mice engrafted with shCTL cells. Taken together, our data suggest that p65 O-GlcNAcylation promotes lung metastasis of cervical cancer cells by activating CXCR4 expression.

Gene Expression of ADAM-8, 9, 10, 12, 15, 17 and ADAMTS-1 in Ovariectomized Mice Uteri (난소를 제거한 생쥐 자궁조직에서의 ADAM-8, 9, 10, 12, 15, 17 그리고 ADAMTS-1의 유전자 발현)

  • Kim, Ji-Young;Huh, Ju-Young;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.8 no.2
    • /
    • pp.99-111
    • /
    • 2004
  • The present study aimed to investigate whether the expression of ADAM-8, 9, 10, 12, 15, 17 and ADAMTS-1 genes is controlled by ovarian steroid hormones. Ovariectomized mice were injected with 17 ${\beta}$-estradiol ($E_2$), progesterone ($P_4$, or $E_2+P_4$. Uterine tissues were processed for RT-PCR and immunoblotting. The results of RT-PCR showed that administration of $E_2$ increases the level of ADAM-8, 12 and ADAM17 expression compared to $P_4$ or control group. In contrast, administration of $P_4$ markedly stimulated the expression of ADAM-9, 10, 15 and ADAMTS-1, whereas $E_2$ did not. Immunoblotting analysis using anti-mouse ADAM polyclonal antibodies demonstrated that $E_2$ alone or $E_2+P_4$ treatment results in the strong expression of ADAM-8, 12 and ADAM17 proteins but $P_4$ alone or control group gave weak expression. In contrast, $P_4$ alone or $E_2$ plus $P_4$ treatment increased the expression level of ADAM-9, 10, 15 and DAMTS-1 proteins. $E_2$ alone or control group did not increase the expression. These results indicate that expression of ADAM-8, 12 and ADAM17 genes is upregulated by $E_2$ and that of ADAM-9, 10, 15 and ADAMTS-1 gene is upregulated by $P_4$.

  • PDF

Accelerated Growth of Corynebacterium glutamicum by Up-Regulating Stress-Responsive Genes Based on Transcriptome Analysis of a Fast-Doubling Evolved Strain

  • Park, Jihoon;Lee, SuRin;Lee, Min Ju;Park, Kyunghoon;Lee, Seungki;Kim, Jihyun F.;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1420-1429
    • /
    • 2020
  • Corynebacterium glutamicum, an important industrial strain, has a relatively slower reproduction rate. To acquire a growth-boosted C. glutamicum, a descendant strain was isolated from a continuous culture after 600 generations. The isolated descendant C. glutamicum, JH41 strain, was able to double 58% faster (td=1.15 h) than the parental type strain (PT, td=1.82 h). To understand the factors boosting reproduction, the transcriptomes of JH41 and PT strains were compared. The mRNAs involved in respiration and TCA cycle were upregulated. The intracellular ATP of the JH41 strain was 50% greater than the PT strain. The upregulation of NCgl1610 operon (a putative dyp-type heme peroxidase, a putative copper chaperone, and a putative copper importer) that presumed to role in the assembly and redox control of cytochrome c oxidase was found in the JH41 transcriptome. Plasmid-driven expression of the operon enabled the PT strain to double 19% faster (td=1.82 h) than its control (td=2.17 h) with 14% greater activity of cytochrome c oxidase and 27% greater intracellular ATP under the oxidative stress conditions. Upregulations of genes those might enhance translation fitness were also found in the JH41 transcriptome. Plasmid-driven expressions of NCgl0171 (encoding a cold-shock protein) and NCgl2435 (encoding a putative peptidyl-tRNA hydrolase) enabled the PT to double 22% and 32% faster than its control, respectively (empty vector: td=1.93 h, CspA: td=1.58 h, and Pth: td=1.44 h). Based on the results, the factors boosting growth rate in C. gluctamicum were further discussed in the viewpoints of cellular energy state, oxidative stress management, and translation.

Involvement of Bcl-2 Family and Caspases Cascade in Sodium Fluoride-Induced Apoptosis of Human Gingival Fibroblasts

  • Jung, Ji-Yeon;Park, Jae-Hong;Jeong, Yeon-Jin;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.289-295
    • /
    • 2006
  • Sodium fluoride (NaF) has been shown to be cytotoxic and elicit inflammatory response in human. However, the cellular mechanisms underlying NaF-induced cytotoxicity in periodontal tissues have not yet been elucidated. This study is aimed to investigate the mechanisms of NaF-induced apoptosis in human gingival fibroblast (HGF). NaF decreased the cell viability of HGF in a dose- and time-dependent manner. NaF gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. However, NaF did not affect the production of ROS. In addition, NaF augumented cytochrome c release from mitochondria into the cytosol, and enhanced caspase -9 and -3 activities., cleavage (85 kDa fragments) of poly (ADP-ribose) polymerase (PARP) and upregulation of voltage-dependent anion channel (VDAC) 1. These results demonstrated that NaF-induced apoptosis in HGF may be mediated with mitochondria. Furthermore, NaF elevated caspase-8 activity and upregulated Fas-ligand (Fas-L), suggesting involvement of death receptor mediated pathway in NaF-induced apoptosis. Expression of Bcl-2, an anti-apoptotic Bcl-2 family, was downregulated, whereas expression of Bax, a pro-apoptotic Bcl-2 family, was not affected in NaF-treated HGF. These results suggest that NaF induces apoptosis in HGF through both mitochondria- and death receptor-mediated pathway mediated by Bcl-2 family.

The Changes of Stifle Joint Fluid with Cranial Cruciate Ligament Rupture in Dogs (개에 있어서 전방십자인대 단열시 슬관절액의 변화)

  • Nam-soo, Kim
    • Journal of Veterinary Clinics
    • /
    • v.20 no.4
    • /
    • pp.443-448
    • /
    • 2003
  • To determine whether localization of tartrate-resistant acid phosphatase (TRAP) and cathepsin K was associated with rupture of the cranial cruciate ligament (CCL) in dogs. Tissue specimens were obtained from 30 dogs with CCL rupture during surgical treatment, 8 aged normal dogs, and 9 young normal dogs that were necropsied for reasons unrelated to this study and unrelated to musculoskeletal disease. The cranial cruciate ligament was examined histologically. $TRAP^+$ cells and cathepsin $K^+$ cells were identified by histochemical staining and immunohistochemical staining respectively. TRAP and cathepsin $K^+$ were co-localized within the same cells principally located within the epiligamentous region and to a lesser extent in the core region of ruptured CCL. Localization of $TRAP^+$ cells (P < 0.05) and cathepsin $K^+$ cells (P =0.05) within CCL tissue was significantly increased in dogs with CCL rupture, compared with aged-normal dogs, and young normal dogs (P < 0.05 - TRAP, P < 0.001 - cathepsin K). Localization of $TRAP^+$ cells and cathepsin $K^+$ cells within the CCL tissue of aged-normal dogs was also increased compared with young normal dogs (P < 0.05). Small numbers of $TRAP^+$ cells and cathepsin $K^+$ cells were seen in the intact ligaments of aged-normal dogs, which were associated with ligament fasicles in which there was chondroid transformation of ligament fibroblasts and disruption of the organized hierarchical structure of the extracellular matrix. $TRAP^+$ cells and cathepsin $K^+$ cells were not seen in CCL tissue from young-normal dogs. Localization of the proteinases $TRAP^+$ and cathepsin $K^+$ in CCL tissue was significantly associated with CCL rupture. Small numbers of proteinase positive cells were also localized in the CCL of agednormal dogs without CCL rupture, but were not detected in CCL from young-normal dogs. Taken together, these findings suggest that the cell signaling pathways that regulate expression of these proteinases in CCL tissue may form part of the mechanism that leads to upregulation of collagenolytic ligament remodeling and progressive structural failure of the CCL over time.

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

Adenosine A3 Receptor Mediates ERK1/2- and JNK-Dependent TNF-α Production in Toxoplasma gondii-Infected HTR8/SVneo Human Extravillous Trophoblast Cells

  • Ye, Wei;Sun, Jinhui;Li, Chunchao;Fan, Xuanyan;Gong, Fan;Huang, Xinqia;Deng, Mingzhu;Chu, Jia-Qi
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.4
    • /
    • pp.393-402
    • /
    • 2020
  • Toxoplasma gondii is an intracellular parasite that causes severe disease when the infection occurs during pregnancy. Adenosine is a purine nucleoside involved in numerous physiological processes; however, the role of adenosine receptors in T. gondii-induced trophoblast cell function has not been investigated until now. The goal of the present study was to evaluate the intracellular signaling pathways regulated by adenosine receptors using a HTR-8/SVneo trophoblast cell model of T. gondii infection. HTR8/SVneo human extravillous trophoblast cells were infected with or without T. gondii and then evaluated for cell morphology, intracellular proliferation of the parasite, adenosine receptor expression, TNF-α production and mitogen-activated protein (MAP) kinase signaling pathways triggered by adenosine A3 receptor (A3AR). HTR8/SVneo cells infected with T. gondii exhibited an altered cytoskeletal changes, an increased infection rate and reduced viability in an infection time-dependent manner. T. gondii significantly promoted increased TNF-α production, A3AR protein levels and p38, ERK1/2 and JNK phosphorylation compared to those observed in uninfected control cells. Moreover, the inhibition of A3AR by A3AR siRNA transfection apparently suppressed the T. gondii infection-mediated upregulation of TNF-α, A3AR production and MAPK activation. In addition, T. gondii-promoted TNF-α secretion was dramatically attenuated by pretreatment with PD098059 or SP600125. These results indicate that A3AR-mediated activation of ERK1/2 and JNK positively regulates TNF-α secretion in T. gondii-infected HTR8/SVneo cells.

Mitochondrial Ca2+ Uptake Relieves Palmitate-Induced Cytosolic Ca2+ Overload in MIN6 Cells

  • Ly, Luong Dai;Ly, Dat Da;Nguyen, Nhung Thi;Kim, Ji-Hee;Yoo, Heesuk;Chung, Jongkyeong;Lee, Myung-Shik;Cha, Seung-Kuy;Park, Kyu-Sang
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.66-75
    • /
    • 2020
  • Saturated fatty acids contribute to β-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca2+ depletion followed by notable store-operated Ca2+ entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca2+ uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal β-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca2+ concentration ([Ca2+]i) and reduced depolarization-triggered Ca2+ influx likely due to the inactivation of voltage-gated Ca2+ channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca2+]i overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca2+]i elevation and defective [Ca2+]i transients. Extracellular Ca2+ chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca2+ uptake via MCU upregulation is a mechanism by which pancreatic β-cells are able to alleviate cytosolic Ca2+ overload and its detrimental consequences.

Helixor A Inhibits Angiogenesis in vitro Via Upregutation of Thrombospondin-1 (Helixor A는 시험관 내에서 thrombospondin-1의 상승조절을 통해 신혈관생성을 억제한다.)

  • Yeom Dong-Hoon;Hong Kyong-Ja
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.895-903
    • /
    • 2005
  • Thrombospondin-1 (TSP-1), a negative regulator in tumor growth and angiogenesis, is cell-type specifically regulated under pathological conditions or by extracellular stimuli, and the regulation of TSP-1 gene expression is important for developing new approaches in tumor therapy. Mistletoe is a parasitir plant that have been used for immunomodulation and antitumor therapy. Helixor A is an aqueous part of mistletoes extract. Here we showed that TSP-1 expression was significantly induced at both mRNA and protein levels in the Hepatocarcinorna cell line (Hep3B) and primary bovine endothelial cell line (BAE) exposed to Helixor A. Our promoter analysis confirmed that the expression of TSP-1 gene was regulated by Helixor A at the transcriptional level. In cell invasion assay, the conditioned media obtained from treatment of these cells significantly reduced the number of invasive cells and also inhibited capillary-like tube formation of BAE cells on Matrigel. Moreover, the inhibitory efforts of the conditioned media on cell invasion and tube formation were reversed by blocking with anti-TSP-1 neutralizing antibodies, suggesting that TSP-1 is involved in Helixor A-indured antiangiogenic effect. Taken together, our results suggest that Helixor A have an antiangiogenic effects through upregulation of TSP-1.

Cytokine Induction of Intercellular Adhesion Molecule-1(ICAM-1) Expression on Human Glioblastoma Cell Line, U-251 MG, U-373 MG (교모세포종 U-251MG, U-373MG세포주의 Cytokines처리에 의한 세포내 ICAM-1 발현)

  • Lee, Jong-Won;Kwon, Jung-Taek;Min, Byung-Kook;Park, Seung-Won;Kim, Young-Baeg;Hwang, Sung-Nam;Suk, Jong-Sik;Choi, Duck-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.4
    • /
    • pp.477-484
    • /
    • 2000
  • Objective : Despite advances in the understanding of tumor biology and the tumor immunology, there has been no effective treatment. The Intercellular adhesion molecule-1(ICAM-1) has been shown to be important in interaction involving cells of the immune system and to be upregulated in a number of cell culture systems by cytokines, including immune interferon($IFN-{\gamma}$) and tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$). ICAM-1 has been identified as one of the ligands for lymphocyte function-associated antigen-1(LFA-1). The effectiveness of various cytokines to ICAM-1 induction on cultured human glioblastoma cell lines and potential efficacy of immunotherapy were studied. Method : Human glioblastoma cell lines, U-251 MG, U-373 MG were trypsinized and suspended at $1{\times}10^5cells/ml$ and grown on 8 well chamber slide, the cells were incubated in 0.3ml medium alone or medium containing $IFN-{\gamma}$(1000U/ml) or $TNF-{\alpha}$(250U/ml) or $IFN-{\gamma}$ plus $TNF-{\alpha}$ for 6, 12, 24, 48 and 72 hours. The coverslip were then removed and stained with a 1/30 dilution of anti-ICAM-1 antibody. Result : Surface antigen expression of ICAM-1 was increased by incubating glioblastoma cell lines with $IFN-{\gamma}$ and $TNF-{\alpha}$. Combined effect of $IFN-{\gamma}$ and $TNF-{\alpha}$ has induced more ICAM-1 expression on glioblastoma cell lines. Upregulation of ICAM-1 expression in an established glioblastoma cell line was of greater magnitude and more rapid following incubation with $IFN-{\gamma}$ plus $TNF-{\alpha}$. Surface antigen expression of ICAM-1 was increased for up to 48 hours after cytokine treatment on both cell lines(p<0.05). There was no difference on both cell lines(p>0.05). Conclusion : The results of the present study indicate that ICAM-1 expression in glioblastoma cell lines, U-251 MG and U-373 MG, are induced and enhanced after treatment with $IFN-{\gamma}$ and $TNF-{\alpha}$. Combined effect of $IFN-{\alpha}$ and $TNF-{\gamma}$ is stronger and more rapid than $IFN-{\gamma}$ or $TNF-{\alpha}$ alone.

  • PDF