• Title/Summary/Keyword: Upregulation

Search Result 736, Processing Time 0.032 seconds

Comparison of gloverin gene expression patterns between domesticated and wild silkworms

  • Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Sung-Wan;Park, Seung-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.113-120
    • /
    • 2016
  • Bombyx mandarina is widely accepted as ancestor of B. mori. Silkworms are served as well-characterized models for understanding the mechanism for the genetic regulation of development. In this study, we performed RNA-Seq analysis to examine tissue-expression of gloverin isoforms of the silk-gland, mid-gut, and fat body in B. mandarina. BLAST analysis revealed that four gloverin isoform gene sequences of B. mandarina were highly similar to B. mori. To identify the difference between two species, the expression profile of gloverin was measured by semi- RT-PCR analysis. The specific expression of gloverin isoform genes was observed mainly in the fat body from B. mori but not B. mandarina. However, all of tissues in the wild-type silkworm could induce the upregulation of compared with the B. mori. To validate the sudden increase in gloverin gene expression in the mid-gut tissue of B. mandarina, we were using qRT-PCR. Relative mRNA expression rate of gloverin at the wild-type silkworm was much higher than domestic silkworm. Comparative genomics between domesticated and wild silkworms showed different tissue-expression levels in some of immune related genes. These results are suggesting a trend toward decreasing immunity related genes expression during domestication. Further studies are needed to elucidate the silkworm domestication and an invaluable resource for wild silkworm genomics research.

Granulocyte Macrophage-Colony Stimulating Factor Signaling in Development of Mouse Embryos (Granulocyte Macrophage Colony Stimulating Factor에 의한 생쥐 초기 배아 발생의 신호전달)

  • Suh, Hye-Young;Chung, Kyu-Hoi;Kang, Byung-Moon;Gye, Myung-Chan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.1
    • /
    • pp.5-14
    • /
    • 2003
  • Objective: Present study was aimed to verify the effect of granulocyte macrophage-colony stimulating factor (GM-CSF) in the preimplantation development of mouse embryos and the involvement of the mitogen activated protein kiase (MAPK) in the GM-CSF signaling. Methods: Two-cell embryos were cultured for 96 h in the presence or absence of GM-CSF (0, 0.4, 2, 10 ng/ml) and PD98059, a MEK inhibitor (10 ${\mu}M$). Morphological development, cell number per blastocyst, and apoptotic nuclei, were eamined. MAPK activity of embryonic immunoprecipitate by MAPK (ERK1/2) antibody was measured by in vitro phosphorylation of myelin basic protein. Results: At post hCG 122 h the embryonic development among the experimental groups was significantly different (p=0.018). The rate of blastocyst development and cell number per embryo were the highest in 2 ng/ml GM-CSF treatment group. The percent of apoptotic cells of the GM-CSF-treated embryos was the lowest among the group. In blastocysts, GM-CSF treatment transiently increased MAPK activity. PD098059 attenuated the effect of GM-CSF on the morphological development, increase in cell number per blastocyst, down regulation of apoptosis, and upregulation of MAPK activity, suggesting that activation of MAPK cascade possibly mediated the embryotropic effect of GM-CSF. Conclusion: This result suggested that GM-CSF potentiated the development of preimplantation mouse embryos by activation of MAPK.

난소를 제거한 생쥐 자궁조직에서 ADAM-8, -9, -10, -12, -15, -17, -TS1의 발현

  • 김지영;배인희;이승재;최영민;김해권
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.59-59
    • /
    • 2003
  • ADAM은 metalloprotease/disintegrin domain을 가진 transmembrane glycoprotein으로서 지금까지 30종류 이상의 ADAM 및 10종류 이상의 ADAM-TS 단백질이 알려져 있다. 이들의 기능은 포유동물의 수정 시 sperm-egg binding과 fusion, myoblast fusion, integrin과의 결합 등에 직접 관여하거나, TNF-alpha 등의 생체신호전달물질이 세포로부터 분비될 때에 이들의 구조를 변화시켜 활성화시키는 효소로서의 작용, 그리고 dendritic cell differentiation 등에 관여하는 것으로 알려져 있다. 본 연구에서는 난소가 제거된 생쥐를 이용하여 자궁조직의 ADAM-8, -9, -10, -12, -15, -17 그리고 -TS1의 gene의 발현이 $17 \beta $-estradiol에 의하여 조절되는 지를 알아보았다. 생후 6 - 8주 된 암컷 생쥐의 난소를 제거하고, 2 주 후에 $17 \beta $-estradiol ($E_2$), progesterone ($P_4$) 혹은 이 둘 혼합액 ($E_2 + P_4$)을 sesame oil에 녹여 근육주사하였다. 2, 6, 12 시간 후 각각 자궁 조직을 얻고 유전자의 발현 양상을 알아보기 위하여 시료로부터 total RNA을 추출하여 역전사 중합효소반응 (RT-PCR)을 실시하였다. Densitometry를 이용, rpL7에 대한 ADAMS의 mRNA 발현 양을 상대적으로 분석하였다. 그 결과 ADAM-8과 -15는 6시간째에서, ADAM-10과 -TS1은 2시간째에서 sesame oil을 주사하거나 $P_4$만을 주사한 군보다 E$_2$를 주사한 군에서 mRNA의 양이 현저하게 증가하였고 ADAM-12는 2시간째에서 ADAM-17은 12시간째에서 sesame oil을 주사하거나 $P_$만을 주사한 군보다 E$_2$를 주사한 군에서 mRNA의 양이 현저하게 증가하였다. 이러한 결과로 미루어 ADAM-8, -10, -15 그리고 TS1은 progesterone에 의하여, ADAM-12와 17은 $17 \beta $-estradiol에 의하여 유전자의 발현이 upregulation 되는 것으로 생각되어진다.

  • PDF

Isolation and Characterization of Pathogen-Inducible Putative Zinc Finger DNA Binding Protein from Hot Pepper Capsicum annuum L.

  • Oh, Sang-Keun;Park, Jeong-Mee;Jung, Young-Hee;Lee, Sanghyeob;Kim, Soo-Yong;Eunsook Chung;Yi, So-Young;Kim, Young-Cheol;Seung, Eun-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.79.2-80
    • /
    • 2003
  • To better understand plant defense responses against pathogen attack, we identified the transcription factor-encoding genes in the hot pepper Capsicum annuum that show altered expression patterns during the hypersensitive response raised by challenge with bacterial pathogens. One of these genes, Ca1244, was characterized further. This gene encodes a plant-specific Type IIIA - zinc finger protein that contains two Cys$_2$His$_2$zinc fingers. Ca1244 expression is rapidly and specifically induced when pepper plants are challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generates weak Ca1244 expression. Ca1244 expression is also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene releasing compound. Whereas, salicylic acid and methyl jasmonate had moderate effects. Pepper protoplasts expressing a Ca1244-smGFP fusion protein showed Ca1244 localizes in the nucleus. Transgenic tobacco plants overexpressing Ca1244 driven by the CaMV 355 promoter show increased resistance to challenge with a tobacco-specific bacterial pathogen. These plants also showed constitutive upregulation of the expression of multiple defense-related genes. These observations provide the first evidence that an Type IIIA - zinc finger protein, Ca1244, plays a crucial role in the activation of the pathogen defense response in plants.

  • PDF

CD30-Mediated Regulation of Cell Adhesion Molecule Expression on Murine T Cells

  • Nam, Sang-Yun
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • Background: CD30 is a member of TNF receptor family and expressed on lymphocytes and other hematopoietic cells following activation as well as Hodgkin and Reed-Sternberg cells in Hodgkin's lymphoma. In this study, CD30-mediated regulation of cell adhesion molecule expression on normal activated mouse T cells was investigated. Methods: Mouse T cells were activated with anti-CD3 antibody for induction of CD30, which was cross-linked by immobilized anti-CD30 antibody. Results: High level of CD30 expression on T cells was observed on day 5, but only little on day 3 even under culture condition resulting in an identical T cell proliferation, indicating that CD30 expression requires a prolonged stimulation up to 5 days. Cross-linking of CD30 alone altered neither proliferation nor apoptosis of normal activated T cells. Instead, CD30 appeared to promote cell adherence to culture substrate, and considerably upregulated ICAM-1 and, to a lesser extent, ICAM-2 expression on activated T cells, whereas CD2 and CD18 (LFA-1) expression was not affected. None of cytokines known as main regulators of ICAM-1 expression on tissue cells (IL 4, $IFN{\gamma}$ and $IFN{\alpha}$) enhanced ICAM-1 expression in the absence of CD30 signals. On the other hand, addition of $NF-{\kappa}B$ inhibitor, PDTC (0.1 mM) completely abrogated the CD30-mediated upregulation of ICAM-1 expression, but not CD2 and ICAM-2 expression. Conclusion: This results support that CD30 upregulates ICAM-1 expression of T cell and such regulation is not mediated by higher cytokine production but $NF-{\kappa}B$ activation. Therefore, CD30 may play important roles in T-T or T-B cell interaction through regulation of ICAM-1, and -2 expression.

The experimental Studies on the immunomodulational effects of Lonicerae Caulis et Folium -the effects of Lonicerae Caulis et Folium on cytokines production in mice splenocytes- (인동등(忍冬藤)의 면역조절작용(免疫調節作用)에 대한 실험적(實驗的) 연구(硏究)(II) -인동등(忍冬藤) 각 fraction이 mice 비장세포에서 cytokines 생성에 미치는 영향-)

  • Lee, Young-Cheol;Kwon, Taek-Hyun;Ok, In-Soo;Seo, Chang-Woo;Kim, Yang-Jin;Roh, Seong-Soo;Seo, Young-Bae
    • The Korea Journal of Herbology
    • /
    • v.20 no.4
    • /
    • pp.141-149
    • /
    • 2005
  • In order to investigate the immunomodulational effects of Lonicerae Caulis et Folium, the author measured cytokines production(IL-10, IL-12(P35), IL12(P40), $IFN-{\gamma}$) in mice splenocytes. The results were obtained as follows : 1. The water extract of Lonicerae Caulis et Folium significantly enhanced the gene expression of IL-12(P35), IL-12(P40), but reduced the gene expression of IL-10, $IFN-{\gamma}$. 2. In water fraction and ethyl acetate fraction, the gene expression of IL-12(P35), $IFN-{\gamma}$ was significantly increased and that of IL-12(P40), IL-10 was decreased. The above results demonstrate that Lonicerae Caulis et Folium has enhancing immune activity by upregulation of these cytokines. Therefore, if we make the relationship between these cytokines(IL-10, IL-12, $IFN-{\gamma}$) besides IL-1, IL-4, IL-6, $TNF-{\alpha}$, IL-8, $TGF-{\beta}$ and so on which concerned the immunopotentiation, the immunopotentiational mechanism of Lonicerae Caulis et Folium will be shown clearly.

  • PDF

Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells

  • Ju, Sung Mi;Youn, Gi Soo;Cho, Yoon Shin;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.172-177
    • /
    • 2015
  • Upregulation of pro-inflammatory mediators contributes to ${\beta}$-cell destruction and enhanced infiltration of immune cells into pancreatic islets during development of type 1 diabetes mellitus. In this study, we examined the regulatory effects and the mechanisms of action of celastrol against cytotoxicity and pro-inflammatory immune responses in the RINm5F rat pancreatic ${\beta}$-cell line stimulated with a combination of interleukin-1 beta, tumor necrosis factor-alpha, and interferon-${\gamma}$. Celastrol significantly restored cytokine-induced cell death and significantly inhibited cytokine-induced nitric oxide production. In addition, the protective effect of celastrol was correlated with a reduction in pro-inflammatory mediators, such as inducible nitric oxide synthase, cyclooxygenase-2, and CC chemokine ligand 2. Furthermore, celastrol significantly suppressed cytokine-induced signaling cascades leading to nuclear factor kappa B (NF-${\kappa}B$) activation, including $I{\kappa}B$-kinase (IKK) activation, $I{\kappa}B$ degradation, p65 phosphorylation, and p65 DNA binding activity. These results suggest that celastrol may exert its cytoprotective activity by suppressing cytokine-induced expression of pro-inflammatory mediators by inhibiting activation of NF-${\kappa}B$ in RINm5F cells.

Anti-invasive activity of histone deacetylase inhibitors via the induction of Egr-1 and the modulation of tight junction-related proteins in human hepatocarcinoma cells

  • Kim, Sung-Ok;Choi, Byung-Tae;Choi, Il-Whan;Cheong, Jae-Hun;Kim, Gi-Young;Kwon, Taeg-Kyu;Kim, Nam-Deuk;Choi, Yung-Hyun
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.655-660
    • /
    • 2009
  • The potential anti-metastasis and anti-invasion activities of early growth response gene-1 (Egr-1) and claudin-3, a tight junction (TJ)-related protein, were evaluated using histone deacetylase (HDAC) inhibitors in human hepatocarcinoma cells. The results of wound healing and Transwell assays showed that HDAC inhibitors such as trichostatin A and sodium butyrate inhibited cell migration and invasion. HDAC inhibitors markedly induced Egr-1 expression during the early period, after which expression levels decreased. In addition, the down-regulation of snail and type 1 insulin-like growth factor receptor (IGF-1R) in HDAC inhibitor- treated cells induced the upregulation of thrombospondin-1 (TSP-1), E-cadherin and claudin-3. Cells transfected with Egr-1 and claudin-3 siRNA displayed significant blockage of HDAC inhibitor-induced anti-invasive activity. Collectively, these findings indicate that the up-regulation of Egr-1 and claudin-3 are crucial steps in HDAC inhibitor-induced anti-metastasis and anti-invasion.

Naesohwangryeon-tang Induced Apoptosis and Autophagy in A549 Human Lung Cancer Cells

  • Kim, Hong Jae;Jeong, Jin-Woo;Park, Cheol;Choi, Yung Hyun;Hong, Su Hyun
    • Journal of Pharmacopuncture
    • /
    • v.22 no.4
    • /
    • pp.269-278
    • /
    • 2019
  • Objectives: Naesohwangryeon-tang (NHT) is a type of traditional herbal formula, however, little is known about its antitumor activity. In this study, the antitumor properties of NHT was evaluated in human lung adenocarcinoma cells. Methods: To check the inhibitory effect of NHT, MTT assay was performed. Cell cycle analysis and detection of ROS production were conducted by flow cytometry. To evaluate the signaling pathway, Western blotting was conducted. Results: Our results showed that the decrease of cell proliferation by NHT stimulation occurred more significantly in A549 cells than in NCI-H460 cells. In addition, NHT-induced apoptosis was associated with the activation of caspases and production of reactive oxygen species (ROS). NHT-induced apoptosis was attenuated after pretreatments with z-VAD-fmk or N-acetylcysteine, suggesting that NHT-induced apoptosis was caspaseand ROS-dependent. Interestingly, NHT treatment led to the development of autophagic vesicular organelles and upregulation of several autophagy-related genes. The pretreatment of bafilomycin A1 decreased apoptosis slightly but increased cell viability in the presence of NHT. Conclusion: These findings indicated that NHT induces both apoptosis and cell-protective autophagy in human lung cancer cells. This data suggests that NHT might be a novel herbal drug for lung cancer.

Retinoic Acid Induces Abnormal Palate During Embryogenesis in Rat

  • Shin, Jeong-Oh;Park, Hyoung-Woo;Bok, Jin-Woong;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • In order to understand the effects of all-trans-RA on palate development, RA was injected into the abdominal cavity of pregnant mice and then the embryos were taken in the following days and analyzed morphologically as well as molecular biologically. When RA was administered at the stage of E11 or E15, the overall craniofacial development was retarded. The length from jaw to eye was shortened, compared to that of normal group. When the E11 embryos were exposed to RA, cleft lip was also found along with the cleft palate. In vitro palate culture experiment also revealed that RA caused cleft palate. When RT-PCR was performed, early stage administration of RA at E11 inhibited the upregulation of Hoxa7 expression at E15 through E17. Whereas in control group, high level of Hoxa7 expression was detected in the palate of E15 to E17. In the case of Bax, the expression was decreased from E16, while remaining constant in control group. When TUNEL analysis was performed following the RA treatment at E15, TUNEL positive cells were detected in the mesenchymal cells as well as epithelial cells of palatal shelves of E16 and in E17 embryos. Whereas in normal control, TUNEL positive cells were observed mostly at the epithelium around the nasal cavity and oral cavity where rugae is made. These results altogether indicate that exposure to RA during palate development causes facial deformity including cleft palate and cleft lip by modulating the expression of homeotic genes such as Hoxa7 as well as an apoptosis-related gene, Bax, and thus malregulating the apoptosis.