• Title/Summary/Keyword: Upper-level controller

Search Result 30, Processing Time 0.024 seconds

Design of Velocity Ripple Controller using Phase Compensation Feedforward Control (피드포워드 제어를 이용한 위상차 보정 속도리플 제어기의 설계)

  • Tae, Won-Hyoung;Kim, Jung-Han;Shim, Jong-Youp;Oh, Jeong-Seok;Song, Jun-Yeob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.705-713
    • /
    • 2014
  • In this paper, we propose a novel velocity ripple controller using phase compensation feedforward control. Velocity ripples result in many kinds of performance degradations in manufacturing machines, especially such as ultra-precision roll lathes. The generation of velocity ripple in constant velocity control comes from various causes, such as electrical torque ripples, mechanical worn out, inconsistent mass center, etc. Conventional researches about ripple is mainly for reducing torque ripple in actuator level, which is only one of reasons for velocity ripples, so in this study, we focus on eliminating velocity ripples in upper level controller using phase compensation feedforward controller. The proposed algorithm is composed of several modules, such as ripple extractor, phase adjuster and phase follower etc. The suggested algorithm can be easily extended, and it shows a superior performance in the experiments of ultra-precision roll lathes.

A Dynamic Defense Using Client Puzzle for Identity-Forgery Attack on the South-Bound of Software Defined Networks

  • Wu, Zehui;Wei, Qiang;Ren, Kailei;Wang, Qingxian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.846-864
    • /
    • 2017
  • Software Defined Network (SDN) realizes management and control over the underlying forwarding device, along with acquisition and analysis of network topology and flow characters through south bridge protocol. Data path Identification (DPID) is the unique identity for managing the underlying device, so forged DPID can be used to attack the link of underlying forwarding devices, as well as carry out DoS over the upper-level controller. This paper proposes a dynamic defense method based on Client-Puzzle model, in which the controller achieves dynamic management over requests from forwarding devices through generating questions with multi-level difficulty. This method can rapidly reduce network load, and at the same time separate attack flow from legal flow, enabling the controller to provide continuous service for legal visit. We conduct experiments on open-source SDN controllers like Fluid and Ryu, the result of which verifies feasibility of this defense method. The experimental result also shows that when cost of controller and forwarding device increases by about 2%-5%, the cost of attacker's CPU increases by near 90%, which greatly raises the attack difficulty for attackers.

Vehicle Steering System Analysis for Enhanced Path Tracking of Autonomous Vehicles (자율주행 경로 추종 성능 개선을 위한 차량 조향 시스템 특성 분석)

  • Kim, Changhee;Lee, Dongpil;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.27-32
    • /
    • 2020
  • This paper presents steering system requirements to ensure the stabilized lateral control of autonomous driving vehicles. The two main objectives of a lateral controller in autonomous vehicles are maintenance of vehicle stability and tracking of the desired path. Even if the desired steering angle is immediately determined by the upper level controller, the overall controller performance is greatly influenced by the specification of steering system actuators. Since one of the major inescapable traits that affects controller performance is the time delay of the steering actuator, our work is mainly focused on finding adequate parameters of high level control algorithm to compensate these response characteristics and guarantee vehicle stability. Actual vehicle steering angle response was obtained with Electric Power Steering (EPS) actuator test subject to various longitudinal velocity. Steering input and output response analysis was performed via MATLAB system identification toolbox. The use of system identification is advantageous since the transfer function of the system is conveniently obtained compared with methods that require actual mathematical modeling of the system. Simulation results of full vehicle model suggest that the obtained tuning parameter yields reduced oscillation and lateral error compared with other cases, thus enhancing path tracking performance.

Development of GUI-program for Auto-tuning PID controller using relay feedback and Application of level-temperature plant (릴레이 궤환을 이용한 자동동조 PID 제어기의 GUI-Program 개발과 수위온도제어 플랜트에의 실시간 적용)

  • Yoo, Byong-Chul;Han, Jin-Wook;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.609-611
    • /
    • 1999
  • The purpose of this research is on figuring out the optimal PID parameter using critical gain and critical frequency that are obtained by relay feedback. The operating has been done under the condition that the least information about the object plant is given and also the operating is processed within the limit which dose not give rise to bad influence on the object plant. For simulation auto-tuning PID controller using relay feedback which also works on on-line at the same time is developed by the upper procedure. This algorithm is tried to apply to level-temperature control plant on a real time with PC Interface Card.

  • PDF

Communication Software Development and Experiments for a Cell Controller in a CIM System (자동화 시스템내 셀 제어기의 통신 소프트웨어 개발 및 실험)

  • S.H. Do;B.S. Jung;Park, G.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.88-99
    • /
    • 1995
  • The demand for automatic manufacturing systems is increasing. Flexible Manufacturing System(FMS) is usually considered as a soluting for the shop floor automation. One of the difficulties in FMS is the communications problem. Since various machineries with different communications protocoles are included, applying a unified scheme is almost impossible. Therefore, a systematic approach is a key point to solve the communication problem. A cell is difined as an automation unit where closely related for a job reside together. A cell is a messenger between upper level computers and lower level machine equipment. In this research, the fonctions of the cell are defined to have more capabilities than conventional cells since a cell can be often a total manufacturing system is a small to medium sized factory. The cell conducts communications with different machines through the communications schemes established here. A set of software system has been developed according to the defined communication. The software has been tested for a simulation and real experiments for proof.

  • PDF

Software development for a cell controller operation and scheduling in a CIM system (자동화 공정 내의 셀 제어기 작동에 대한 정의 및 스케줄러의 개발)

  • S.H. Do;J.H. Lee;K.J. Park;M.J. Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.75-87
    • /
    • 1994
  • The demand for automatic manufacturing systems is increasing. One of the crucial obstacles to the Flexible Manufacturing System(FMS) is the lack of excellent strategies for efficient operations. The aim of this research is constructing an automaton scheme in the low level of factories where various machineries are involved. An operating strategy is established for an automation unit named as a cell which resides between the upper level computers and manufacturing shop floor. The cell is defined to fit into the total manufacturing system. The defined cell has more functions than conventional cells. A scheduling scheme is adopted for the shop floor operations. A set of software has been developed and tested through simulations and shop floor experiments.

  • PDF

Integrated Chassis Control System with Fail Safety Using Optimum Yaw Moment Distribution (최적 요모멘트 분배 방법을 이용한 고장 안전 통합 섀시 제어기 설계)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.315-321
    • /
    • 2014
  • This paper presents an integrated chassis control system with fail safety using optimum yaw moment distribution for a vehicle with steer-by-wire and brake-by-wire devices. The proposed system has two-level structure: upper- and lower-level controllers. In the upper-level controller, the control yaw moment is computed with sliding mode control theory. In the lower-level controller, the control yaw moment is distributed into the tire forces of active front steering(AFS) and electronic stability control(ESC) with the weighted pseudo-inverse based control allocation(WPCA) method. By setting the variable weights in WPCA, it is possible to take the sensor/actuator failure into account. In this framework, it is necessary to optimize the variables weights in order to enhance the yaw moment distribution. For this purpose, simulation-based tuning is proposed. To show the effectiveness of the proposed method, simulations are conducted on a vehicle simulation package, CarSim.

Control System Design of Pelvis Platform for Biped Walking Stability (이족보행 안전성을 위한 골반기구의 제어시스템 설계)

  • Kim, Su-Hyeon;Yang, Tae-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.306-314
    • /
    • 2009
  • The pelvis platform is the mechanical part which accomplishes the activities of diminishing the disturbances from the lower body and maintaining a balanced posture. When a biped robot walks, a lot of disturbances and irregular vibrations are generated and transmitted to the upper body. As there are some important machines and instruments in the upper body or head such as CPU, controller units, vision system, etc., the upper part should be isolated from disturbances or vibrations to functions properly and finally to improve the biped stability. This platform has 3 rotational degrees of freedom and is able to maintain balanced level by feedback control system. Some sensors are fused for more accurate estimation and the control system which integrates synchronization and active filtering is simulated on the virtual environment.

AEBS Algorithm with Tire-Road Friction Coefficient Estimation (타이어-노면 마찰계수 추정을 이용한 AEBS 알고리즘)

  • Han, Seungjae;Lee, Taeyoung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 2013
  • This paper describes an algorithm for Advanced Emergency Braking(AEB) with tire-road friction coefficient estimation. The AEB is a system to avoid a collision or mitigate a collision impact by decelerating the car automatically when forward collision is imminent. Typical AEB system is operated by Time-to-collision(TTC), which considers only relative velocity and clearance from control vehicle to preceding vehicle. AEB operation by TTC has a limit that tire-road friction coefficient is not considered. In this paper, Tire-road friction coefficient is also considered to achieve more safe operation of AEB. Interacting Multiple Model method(IMM) is used for Tire-road friction coefficient estimation. The AEB algorithm consists of friction coefficient estimator and upper level controller and lower level controller. The numerical simulation has been conducted to demonstrate the control performance of the proposed AEB algorithm. The simulation study has been conducted with a closed-loop driver-controller-vehicle system using using MATLAB-Simulink software and CarSim Vehicle model.

Actuator Fault Detection and Adaptive Fault-Tolerant Control Algorithms Using Performance Index and Human-Like Learning for Longitudinal Autonomous Driving (종방향 자율주행을 위한 성능 지수 및 인간 모사 학습을 이용하는 구동기 고장 탐지 및 적응형 고장 허용 제어 알고리즘)

  • Oh, Sechan;Lee, Jongmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.129-143
    • /
    • 2021
  • This paper proposes actuator fault detection and adaptive fault-tolerant control algorithms using performance index and human-like learning for longitudinal autonomous vehicles. Conventional longitudinal controller for autonomous driving consists of supervisory, upper level and lower level controllers. In this paper, feedback control law and PID control algorithm have been used for upper level and lower level controllers, respectively. For actuator fault-tolerant control, adaptive rule has been designed using the gradient descent method with estimated coefficients. In order to adjust the control parameter used for determination of adaptation gain, human-like learning algorithm has been designed based on perceptron learning method using control errors and control parameter. It is designed that the learning algorithm determines current control parameter by saving it in memory and updating based on the cost function-based gradient descent method. Based on the updated control parameter, the longitudinal acceleration has been computed adaptively using feedback law for actuator fault-tolerant control. The finite window-based performance index has been designed for detection and evaluation of actuator performance degradation using control error.