• Title/Summary/Keyword: Upper limbs movement

Search Result 53, Processing Time 0.021 seconds

A Study on the Robot Structure of Hand for the Rehabilitation Training of Stroke Patients

  • Kim, Jong-Bok;Kim, Jong-Chul;Hwang, Dae-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.116-124
    • /
    • 2019
  • The rehabilitation training robots for treating the upper limbs of stroke patients were mainly focused on the upper proximal treatment of it, but recently studies of the distal parts of the upper limbs for rehabilitation of the hand is making some progress even though it is still a small number so far. In this paper, we present the hand robot for the rehabilitation training of stroke patients that is the fingertip contact-typed mechanism, and it has also equipped with the wrist rehabilitation unit to be worked like human hand that enables any movements through mutual cooperation by fingers while picking up or grasping objects. The robot that is presented for this purpose supports the movement of fingers with 5-DoF and the wrist with 3-DoF that moves independently, and operates with a structure that allows the joints of the wrist and fingers to be collaborated organically together to each other. Also, hereby the simulation and evaluation test on its robot mechanism are performed to ensure that fingers with 5-DoF and the wrist with 3-DoF of the serial kinematical mechanism are designed to comply with or exceed ROM for ADL.

The Research for Using Method of GRF (Ground Reaction Force) on Rotational Movement in Arabesque (아라베스크 회전동작 시 지면반력 활용방법에 관한 연구)

  • Gwon, An-Suk;Lee, Geon-Beom
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.1-10
    • /
    • 2005
  • G. B. LEE, A. S. GWON, The Research for Using methodof GRF (Ground Reaction Force) on Rotational Movement in Arabesque. Korean Journal of Sport Biomechanics, Vol. 15, No. 2, pp.1-10, 2005. As, in relation to all movements of a human being, the movements such as mutually walking, running, rotating, and jumping are attained endlessly through the ground amid the interaction with the ground, in terms of the harmonious movement of the upper limbs and the lower limbs, related to the basic movement in ballet, the type of a movement depends on the size and direction of the force that presses down the ground (Fz, Fx, Fy) amid the interaction with the ground. Therefore, aiming to correctly and efficiently perform a rotational movement in Arabesque, this study analyzed factors of the force manifestation through GRF (Ground Reaction Force), by dividing into preparing, stepping, standing, rotating, and finishing stages (events (1) ${\sim}$ (5)), targeting the subjects of 4 elite female students who majored in ballet. 1. At the No.5 position of the preparing stage, It is necessary that support the ground with left and right foot balance, 2. As the stepping stage is the phase ranging from the event (2), in which a plie movement of bending a knee is started, to the event (3) of stretching a knee, Rebunding motion is not good, and One have a position with ankle and knee flextion condition in order to stretch strengthly in event (3) position 3. At the event (1) position, It is necessary that exert the Fz reaction force at the event (3) position. Because large stretch force help to have a toe on position easily and show a active motion 4. In order to have a stand and rotation motion smoothly, One need a muscle strength training for ankle extension, knee extension, control horizental force

Kinematic Analysis of Dynamic Stability Toward the Pelvis-spine Distortion during Running (달리기 시 체간의 골반-척추구조변형이 동적안정성에 미치는 연구)

  • Park, Gu-Tae;Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.369-376
    • /
    • 2013
  • The purposes of this study were to assess dynamic stability toward pelvis-spine column distortion during running and to compare the typical three-dimensional angular kinematics of the trunk motion; cervical, thoracic, lumbar segment spine and the pelvis from the multi-segmental spine model between exercise group and non-exercise group. Subjects were recruited as exercise healthy women on regular basis (group A, n=10) and non-exercise idiopathic scoliosis women (group B, n=10). Data was collected by using a vicon motion capture system (MX-T40, UK). The pelvis, spine segments column and lower limbs analysiaed through the 3D kinematic angular ROM pattern. There were significant differences in the time-space variables, the rotation motion of knee joint in lower limbs and the pelvis variables; obliquity in side bending, inter/outer rotation in twisting during running leg movement. There were significant differences in the spinal column that is lower-lumbar, upper-lumbar, upper-thoracic, mid-upper thoracic, mid-lower thoracic, lower thoracic and cervical spine at inclination, lateral bending and twist rotation between group A and group B (<.05, <.01 and <.001). As a results, group B had more restrictive motion than group A in the spinal column and leg movement behaved like a 'shock absorber". And the number of asymmetry index (AI) showed that group B was much lager unbalance than group A. In conclusion, non-exercise group was known to much more influence the dynamic stability of equilibrium for bilateral balance. These finding suggested that dynamic stability aimed at increasing balance of the trunk ROM must involve methods and strategies intended to reduce left/right asymmetry and the exercise injury.

Characteristics of Initiation and Termination of Muscle Contraction in Early Hemiparetic Wrists: Analysis of Median Frequency (초기 편마비 환자에서 손목 근수축 개시 및 종료의 특성: 중앙주파수 분석)

  • Chung, Yi-Jung;Cho, Sang-Hyun;Kwon, Oh-Yun;Lee, Young-Hee
    • Physical Therapy Korea
    • /
    • v.13 no.1
    • /
    • pp.38-46
    • /
    • 2006
  • The purposes of this study were to investigate the median frequency (MDF) between initiation and termination of muscle contraction through surface electromyographic (sEMG) analysis and to propose the basis of clinical treatment for movement problems in early hemiparetic upper limbs. Thirteen patients who had stroke with onset less than 3 months prior to the study and seven control subjects participated in the study. The median frequency in initiation and termination of muscle contraction was recorded from wrist flexor and extensor muscles using the sEMG, with 3 second beeper signals, during maximal isometric wrist flexion and extension. Flexion and extension must be done as quickly and forcefully as possible. The results of the study were as follows: 1. The MDF of the onset and offset sections were significantly lower on the paretic than the nonparetic and control sides. 2. The MDF of the offset section significantly decreased on the paretic and nonparetic sides. Consequently, this study showed that the lowering of the MDF was due to the hemiparetic wrist motor impairment and muscle weakness. These results are also related to Fugl-Meyer motor assessment (FMA) scores in hemiparetic upper limbs. This study also suggests that since muscle weakness of early stroke patients affects the functional decrease of upper limbs, further studies must focus on the treatment to improve muscle agility and muscle fiber recruitment efficiency that can induce the functional recovery correlated to motor control.

  • PDF

Characteristics of Work-related Musculoskeletal Disorders Compensated by the Industrial Accident Compensation Insurance in Shipbuilding Industry (조선업에서 산업재해로 인정된 근골격계질환의 특성)

  • Kim, Sang Woo;Shin, Yong Chul;Kang, Dongmug
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.2
    • /
    • pp.114-123
    • /
    • 2005
  • We analyzed the demographic and job features of 197 shipyard workers with work-related musculoskeletal disorders(WMSDs) compensated by the Industrial Accident Compensation Insurance Act, and the features of the disorders, the causes of operation and the induced behaviors. The three shipbuilding companies surveyed were located in Busan Metropolitan city and Gyungsangnam-do. The results were as follows. 1. The ages of WMSDs patients in shipyard were $43.6{\pm}8.6$ and the job tenure was $14.3{\pm}5.6$. The 40's of them was 40.1%, and the 30's was 29.4%. Patients less than 5 year-work duration were 85.3%, and ones more than 16 year-work duration 6.6%. In occupations, welders were 32.5%, pre-welders 17.3%, and setting engineers 6.6%. 2. The causes of WMSDs in shipyard were works(95.4%) and outer crash or accident shock (3.6%). Based on the standard of the NIOSH induced behaviors, the causes were awkward posture (62.9%), excessive movement(19.3%) and repetitive movement(13.7%). 3. The compensated WMSDs by body part was the highest, 36%, in the spines, 32.0% in both the upper limbs and the spines, and 14% in the upper limbs. The number of cases of WMSDs in body were 96 in the cervical, 79 in the lumbar and 72 in the shoulders. 4. As a result of chi-square test(${\chi}^2$) between diagnosis and operation in body, welding and spot welding had the most diagnoses in all parts of the body among other occupations. Chi-square test(${\chi}^2$) between diagnosis and induced behavior in body showed that awkward postures recorded the highest rate and repetitive movements was the second. 5. The most hazardous occupation was the welding(incidence rate=9.7) and the most hazardous behavior was the awkward posture.

The Study of Anticipatory Postural Adjustments in Voluntary Arm and Leg Movement (수의적인 상·하지 움직임 동안의 체간의 선행적 자세조절 연구)

  • Jung, Kyoung-Sim;Shin, Won-Seob;Chung, Yi-Jung
    • Physical Therapy Korea
    • /
    • v.15 no.2
    • /
    • pp.30-37
    • /
    • 2008
  • Anticipatory postural adjustments are pre-planned by the central nervous system (CNS) before the activation of agonist muscles in the limbs, and minimize postural sway. Most previous studies on this topic have focused on upper-limb movement, and little research has been conducted on lower-limb movement. The purpose of this study was to investigate the recruitment order of left and right trunk muscles during limb movement. Fifteen healthy subjects (10 male, 5 female) were enrolled. Electro-myographic signals were recorded on the muscles of: (1) deltoid, lumbar erector spinae, latissimus dorsi and internal oblique during shoulder flexion, (2) rectus femoris, rectus abdominis, external oblique and internal oblique during hip flexion. During right upper limb flexion, the onset of left erector spinae muscle and left internal oblique muscle activity preceded the onset of right deltoid by 8.09 ms and 19.83 ms, respectively. But these differences were not significant (p>.05). A similar sequence of activation occurred with lower limb flexion. The onset of left internal oblique muscle activity preceded the onset of right rectus femoris muscle by 28.29 ms (p<.05). The onset of right internal oblique muscle activity preceded the onset of left rectus femoris muscles by 23.24 ms (p<.05). The internal oblique muscle was the first activated during limb movement. Our study established the recruitment order of trunk muscles during limb movement, and explained the postural control strategy of the trunk muscles in healthy people. We expect that this study will be used to evaluate patients with an asymmetric recruitment order of muscle activation due to impaired CNS.

  • PDF

Effect of CIMT on the Functional Improvement and BDNF Expression in Hemiplegic Rats Whose Somatomotor Area was Removed (체성운동영역이 제거된 편마비 흰쥐에서 억제 유도치료가 기능향상과 BDNF 발현에 미치는 효과)

  • Lim, Chang-Hun;Hwang, Bo-Gak
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.194-203
    • /
    • 2008
  • CIMT(Constraint Induced Movement Therapy) is to improve the function and use of damaged upper limbs by not only confinement of unaffected limbs' exercise but also inducement of affected limbs' one. The purpose of the study is to verify the effect of CIMT by means of motor behaviour test and immunohistochemistry, using animal models. This study was analyzed using 40 male Sprague-Dawley rats as the experimental groups and 40 ones as the control groups. The rats were divided into two random groups : one group as an experimental group which was operated on under anesthesia and removed somatomotor regions with CIMT and the other as the control group without CIMT.Postural Reflex Test, Beam Walking Test, Limb Placement Test and Immunohistochemistry were run on the day 1, 3 , 7 and day 14 following surgery to each 10 rat. As a result, this study demonstrates that CIMT might be an effect method to verify the plasticity of central nervous system as motor behaviour test made all high scores (p<.05) and BDNF was high too in experimental groups.

Muscle Coactivation Analysis during Upper-Limb Rehabilitation using Haptic Robotics in Stroke Survivors (뇌졸중 환자의 햅틱 로봇 기반 상지 재활 시 근육 동시활성도 분석)

  • Keonyoung Oh
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.66-74
    • /
    • 2024
  • This study analyzed the occurrence of abnormal muscle coactivations based on the assistance of upper limb weight during reaching task in stroke patients. Nine chronic stroke survivors with hemiplegia performed reaching tasks using a programmable haptic robot. Electromyography (EMG) coactivation levels in the upper limb muscles were analyzed using a linear model describing the activation levels of two muscles when the patient's upper limb weight was assisted at 0%, 25%, and 50%. As the upper limb weight assistance of the haptic robot decreased, the magnitude of the EMG signal in both the deltoid and biceps muscles increased simultaneously on both the paretic and non-paretic sides. However, no difference was found between the paretic and non-paretic sides when comparing the slope of the linear model describing the activation relationship between the deltoid and biceps. The aforementioned results suggest that in some stroke survivors, the deltoids, triceps, and biceps on the paretic side may not be abnormally coupled when supporting the upper limbs against gravity. Furthermore, these results suggest that the combination of haptic robots and EMG analysis might be utilized for evaluating abnormal coactivations in stroke patients.

Effect of PNF Approach to Scapular Adductor Muscles on Scapular Movements and Walking Ability in Patients with Stroke

  • Moon, Sang Hyun;Kim, Yong Youn
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.8 no.1
    • /
    • pp.1090-1094
    • /
    • 2017
  • This study investigated the effects of indirectly applying proprioceptive neuromuscular facilitation (PNF) to the scapular adductor muscles of stroke patients on their scapular movements and walking ability. Five patients who were diagnosed with stroke participated in this study as a single group. PNF patterns were applied to the scapulae anterior elevation and posterior depression patterns and upper limbs patterns of the patients in side lying and sitting positions together. The data were analyzed with a paired t-test in order to identify within-group differences in the measurements before and after the intervention. The scapular movements of the upper and lower parts, weight bearing and walking speed were significantly improved in the stroke patients after the application of PNF (p<0.05). These results suggest that PNF training effective in improving the scapular movements and walking ability in patients with stroke.

The Kinematic Analysis of the Tennis Flat Serve Motion (테니스 플랫 서브 동작의 운동학적 분석)

  • Oh, Cheong-Hwan;Choi, Su-Nam;Nam, Taek-Gil
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.97-108
    • /
    • 2006
  • C. H. OH, S. N. CHOI, T. G. NAM, The Kinematic Analysis of the Tennis Flat Serve Motion, Korean Jiurnal of Sports Biomechanics, Vol. 16, No. 2, pp. 97-108, 2006. By the comparison and the analysis of the different factors during the tennis flat serve motion such as the required time per section, the movement displacement of the racket, the velocity of the upper limbs joints, the physical center of gravity, and the angle and the angular velocity of the upper limbs joints between an ace player and a mediocre player, these following results were drawn. First, the experiment result of the total time required per section in a tennis flat serve motion showed that an ace player was faster than a mediocre player by 0.4 seconds. This result suggested that it was required to increase the speed of the racket head by a swift swing to perform an effective flat serve motion. Second, the experiment result of the movement displacement of the racket in the tennis flat serve motion showed that an ace player greatly moved toward the left side on an x-axis. But both an ace and a mediocre player were shown to be at the similar points on a y-axis at the moment of the impact of the racket. An ace player was also shown to be located at a higher position on a z-axis by 0.23m. Third, the velocity of the center of gravity of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fourth, the velocity of the upper limb joints of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fifth, the experiment result of the speed of the racket head in tennis flat serve motion showed that a mediocre player was faster than an ace player in the first phase, but the latter was faster than the former in the second, third, and the fourth phases. Sixth, at the moment of impact of a tennis flat serve, an ace player had greater flexion of the angle of the wrist joints by an 11.8 degree than a mediocre player. An ace player also had greater extension of the angle of the elbow joint and the shoulder joint respectively by a 5.2 degree and a 1.4 degree with a mediocre player. Seventh, an ace player had greater angular velocity of the upper limb joints and the hip joints than a mediocre player at the moment of the impact of tennis flat serve. Eighth, an ace player was shown to have a greater change of the forward and the backward inclination (or the anterior and posterior inclination) of the upper body