• Title/Summary/Keyword: Upper incisor intrusion

Search Result 14, Processing Time 0.026 seconds

Evaluation of changes in the maxillary alveolar bone after incisor intrusion

  • Atik, Ezgi;Gorucu-Coskuner, Hande;Akarsu-Guven, Bengisu;Taner, Tulin
    • The korean journal of orthodontics
    • /
    • v.48 no.6
    • /
    • pp.367-376
    • /
    • 2018
  • Objective: This study was performed to investigate the changes in alveolar bone after maxillary incisor intrusion and to determine the related factors in deep-bite patients. Methods: Fifty maxillary central incisors of 25 patients were evaluated retrospectively. The maxillary incisors in Group I (12 patients; mean age, $16.51{\pm}1.32years$) were intruded with a base-arch, while those in Group II (13 patients; mean age, $17.47{\pm}2.71years$) were intruded with miniscrews. Changes in the alveolar envelope were assessed using pre-intrusion and post-intrusion cone-beam computed tomography images. Labial, palatal, and total bone thicknesses were evaluated at the crestal (3 mm), midroot (6 mm), and apical (9 mm) levels. Buccal and palatal alveolar crestal height, buccal bone height, and the prevalence of dehiscence were evaluated. Two-way repeated measure ANOVA was used to determine the significance of the changes. Pearson's correlation coefficient analysis was performed to assess the relationship between dental and alveolar bone measurement changes. Results: Upper incisor inclination and intrusion changes were significantly greater in Group II than in Group I. With treatment, the alveolar bone thickness at the labial bone thickness (LBT, 3 and 6 mm) decreased significantly in Group II (p < 0.001) as compared to Group I. The LBT change at 3 mm was strongly and positively correlated with the amount of upper incisor intrusion (r = 0.539; p = 0.005). Conclusions: Change in the labial inclination and the amount of intrusion should be considered during upper incisor intrusion, as these factors increase the risk of alveolar bone loss.

The effect of labial inclination on intrusion of the upper and lower incisors by three-dimensional finite element analysis (분절호선법으로 상하악 절치부 압하 시 순측경사도가 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Kim, Dong Woo;Yang, Hoon Chul;Kim, Gi Tae;Kim, Sung Sik;Son, Woo Sung
    • The korean journal of orthodontics
    • /
    • v.33 no.4 s.99
    • /
    • pp.259-277
    • /
    • 2003
  • This study was designed to investigate the position of anteroposterior center of resistance for genuine intrusion and the mode of change of the minimum distal force for simultanous intrusion and retraction of the upper and lower incisors according to the increase of labial inclination. For this purpose, we used the three-piece intrusion arch appliance and three-dimensional finite element models of upper and lower incisors. 1. Positions of the center of resistance in upper incisors according to the increase of the labial inclination were as follows; 1) In normal inclination situation, the center of resistance was located in 6m behind the distal surface of the lateral incisor bracket. 2) In $10^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 9mm behind the distal surface of the lateral incisor bracket. 3) In $20^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 12m behind the distal surface of the lateral incisor bracket. 4) In $30^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 16m behind the distal surface of the lateral incisor bracket. 2. Positions of the center of resistance in lower incisors according to the increase of the labial inclination were as follows; 1) In normal inclination situation, the center of resistance was located in 10mm behind the distal surface of the lateral incisor bracket. 2) In $10^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 13m behind the distal surface of the lateral incisor bracket. 3) In $20^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 15m behind the distal surface of the lateral incisor bracket. 4) In $30^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 18m behind the distal surface of the lateral incisor bracket. 3. The patterns of stress distribution were as follows; 1) There were even compressive stresses In and periodontal ligament when intrusion force was applied through determined center of resistance. 2) There were gradual increase of complexity in compressive stress distribution pattern with Increase of the labial inclination when intrusion and retraction force were applied simultaneously. 4. With increase of the labial inclination of the upper and lower incisors, the position of the center of resistance moved posteriorly. And the distal force for pure intrusion was increased until $20^{\circ}$increase of the labial inclination.

Conventional Anchorage Reinforcement vs. Orthodontic Mini-implant: Comparison of Posterior Anchorage Loss During the En Masse Retraction of the Upper Anterior Teeth

  • Baek, Seung-Hak;Kim, Young-Ho
    • Journal of Korean Dental Science
    • /
    • v.3 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • This study sought to compare the amounts of posterior anchorage loss during the en masse retraction of the upper anterior teeth between orthodontic mini-implant (OMI) and conventional anchorage reinforcement (CAR) such as headgear and/or transpalatal arch. The subjects were 52 adult female patients treated with sliding mechanics (MBT brackets, .022" slot, .019X.025" stainless steel wire, 3M-Unitek, Monrovia, CA, USA). They were allocated into Group 1 (N=24, Class I malocclusion (CI), upper and lower first premolar (UP1LP1) extraction, and CAR), Group 2 (N=15, Cl, UP1LP1 extraction and OMI), and Group 3 (N=13, Class II division 1 malocclusion, upper first and lower second premolar extraction, and OMI). Lateral cephalograms were taken before (T0) and after treatment (T1). A total of 11 anchorage variables were measured. Analysis of variance was used for statistical analysis. There was no significant difference in treatment duration and anchorage variables at T0 among the three groups. Groups 2 and 3 showed significantly larger retraction of the upper incisor edge (U1E-sag, 9.3mm:7.3mm, P<.05) and less posterior anchorage loss (U6M-sag, 0.7~0.9mm:2mm, P<.05; U6A-sag, 0.5mm:2mm, P<.01) than Group 1. The ratio of retraction amount of the upper incisor edge per 1 of anchorage loss in the upper molar made for the significant difference between Groups 1 and 2 (4.6mm:7.0mm, P<.05). Group 3 showed a relatively distal inclination of the upper molar (P<.05) and the intrusion of the upper incisor and first molar (U1E-ver, P<.05; U6F-ver, P<.05) compared to Groups 1 and 2. Although OMI could not shorten the treatment duration, it could provide better maximum posterior anchorage than CAR.

  • PDF

Three-dimensional evaluation of maxillary anterior alveolar bone for optimal placement of miniscrew implants

  • Choi, Jin Hwan;Yu, Hyung Seog;Lee, Kee Joon;Park, Young Chel
    • The korean journal of orthodontics
    • /
    • v.44 no.2
    • /
    • pp.54-61
    • /
    • 2014
  • Objective: This study aimed to propose clinical guidelines for placing miniscrew implants using the results obtained from 3-dimensional analysis of maxillary anterior interdental alveolar bone by cone-beam computed tomography (CBCT). Methods: By using CBCT data from 52 adult patients (17 men and 35 women; mean age, 27.9 years), alveolar bone were measured in 3 regions: between the maxillary central incisors (U1-U1), between the maxillary central incisor and maxillary lateral incisor (U1-U2), and between the maxillary lateral incisor and the canine (U2-U3). Cortical bone thickness, labio-palatal thickness, and interdental root distance were measured at 4 mm, 6 mm, and 8 mm apical to the interdental cementoenamel junction (ICEJ). Results: The cortical bone thickness significantly increased from the U1-U1 region to the U2-U3 region (p < 0.05). The labio-palatal thickness was significantly less in the U1-U1 region (p < 0.05), and the interdental root distance was significantly less in the U1-U2 region (p < 0.05). Conclusions: The results of this study suggest that the interdental root regions U2-U3 and U1-U1 are the best sites for placing miniscrew implants into maxillary anterior alveolar bone.

Three-dimensional finite element analysis on intrusion of upper anterior teeth by three-piece base arch appliance according to alveolar bone loss (치조골 상실에 따른 three-piece base arch appliance를 이용한 상악전치부 intrusion에 대한 3차원 유한요소법적 연구)

  • Ha, Man-Hee;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.209-223
    • /
    • 2001
  • At intrusion of upper anterior teeth in patient with periodontal defect, the use of three-piece base arch appliance for pure intrusion is required. To investigate the change of the center of resistance and of the distal traction force according to alveolar bone height at intrusion of upper anterior teeth using this appliance, three-dimensional finite element models of upper six anterior teeth, periodontal ligament and alveolar bone were constructed. At intrusion of upper anterior teeth by three-piece base arch appliance, the following conclusions were drawn to the locations of the center of resistance according to the number of teeth, the change of distal traction force for pure intrusion and the correlation to the change of vertical, horizontal location of the center of resistance according to alveolar bone loss. 1. When the axial inclination and alveolar bone height were normal, the anteroposterior locations of center of resistance of upper anterior teeth according to the number of teeth contained were as follows : 1) In 2 anterior teeth group, the center of located in the mesial 1/3 area of lateral incisor bracket. 2) In 4 anterior teeth group. the center of resistance was located in the distal 2/3 of the distance between the bracket of lateral incisor and canine. 3) In 6 anterior teeth group, the center of resistance was located in the central area of first premolar bracket .4) As the number of teeth contained in anterior teeth group increased, the center of resistance shifted to the distal side. 2. When the alveolar bone height was normal, the anteroposterior position of the point of application of the intrusive force was the same position or a bit forward position of the center of resistance at application of distal traction force for pure intrusion. 3. When intrusion force and the point of application of the intrusive force were fixed, the changes of distal traction force for pure intrusion according to alveolar bon loss were as follows :1) Regardless of the alveolar bone loss, the distal traction force of 2, 4 anterior teeth groups were lower than that of 6 anterior teeth group. 2) As the alveolar bone loss increased, the distal traction forces of each teeth group were increased. 4. The correlations of the vertical, horizontal locations of the center of resistance according to maxillary anterior teeth groups and the alveolar bone height were as follows : 1) In 2 anterior teeth group, the horizontal position displacement to the vortical position displacement of the center of resistance according to the alveolar bone loss was the largest. As the number of teeth increased, the horizontal position displacement to the vertical position displacement of the center of resistance according to the alveolar bone loss showed a tendency to decrease. 2) As the alveolar bone loss increased, the horizontal position displacement to the vertical position displacement of the center of resistance regardless of the number of teeth was increased.

  • PDF

Displacement pattern of the anterior segment using antero-posterior lingual retractor combined with a palatal plate

  • Seo, Kyung-Won;Kwon, Soon-Yong;Kim, Kyung A;Park, Ki-Ho;Kim, Seong-Hun;Ahn, Hyo-Won;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.45 no.6
    • /
    • pp.289-298
    • /
    • 2015
  • Objective: To evaluate and compare the effects of two appliances on the en masse retraction of the anterior teeth anchored by temporary skeletal anchorage devices (TSADs). Methods: The sample comprised 46 nongrowing hyperdivergent adult patients who planned to undergo upper first premolar extraction using lingual retractors. They were divided into three groups, based on the lingual appliance used: the C-lingual retractor (CLR) group (group 1, n = 16) and two antero-posterior lingual retractor (APLR) groups (n = 30, groups 2 and 3). The APLR group was divided by the posterior tube angulation; posterior tube parallel to the occlusal plane (group 2, n = 15) and distally tipped tube (group 3, n = 15). A retrospective clinical investigation of the skeletal, dental, and soft tissue relationships was performed using lateral cephalometric radiographs obtained pretreatment and post en masse retraction of the anterior teeth. Results: All groups achieved significant incisor and canine retraction. The upper posterior teeth did not drift significantly during the retraction period. The APLR group had less angulation change in the anterior dentition, compared to the CLR group. By changing the tube angulation in the APLR, the intrusive force significantly increased in the distally tipped tube of group 3 patients and remarkably reduced the occlusal plane angle. Conclusions: Compared to the CLR, the APLR provides better anterior torque control and canine tipping while achieving bodily translation. Furthermore, changing the tube angulation will affect the amount of incisor intrusion, even in patients with similar palatal vault depth, without the need for additional TSADs.

PERIODONTAL RESPONSE FOLLOWING APPLICATION OF INTRUSIVE FORCES TO THE INCISORS WITH BONE LOSS AND PERIODONTAL DISEASE IN ADULT DOGS (골결손과 치주질환 유도 후 성견 절치의 실험적 함입이동시 치주조직의 반응)

  • Hwang, Hyeon-Shik;Park, Yang-Soo;Choi, Hong-Ran
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.431-440
    • /
    • 1998
  • While periodontal disease results in the extrusion of upper incisors with interdental spacing in adult patient, the intrusive movement should be executed for the rehabilitation in terms of esthetics and function. The present study was peformed to investigate the periodontal response following orthodontic intrusion of teeth with infrabony pocket. Bone defect and periodontal disease were produced adjacent to the both maxillary second lateral incisors in four adult dogs. Four weeks later, a flap operation was performed to eliminate inflammation and a reference notch was made on the root surface at the level of bottom of each defect. Two weeks after periodontal surgery, 4 weeks of intrusion and subsequent another 4 weeks of retention was executed on the right side of incisors while left incisors served as the control. Through the histologic analysis, following results were obtained. 1. Histologic section of control side showed the reduction of pocket depth after flap operation. However, the status of long junctional epithelium was observed while new connective tissue attachment occurred in a small area adjacent newly formed cementum 2. Epithelial attachment was less around the intruded incisor while new connective tissue attachment was much more compared to the control side. 3. Plenty of cells were observed in the connective tissue around the reference notch of the intruded incisor and the degree of the new cementum formation was higher in the intruded incisor than the control. The results of the present study suggested that an orthodontic intrusion of periodontally involved and extruded incisors could be carried out with a desirable periodontal response, provided that inflammation is under control.

  • PDF

Comparison of treatment effects between four premolar extraction and total arch distalization using the modified C-palatal plate

  • Jo, Sung Youn;Bayome, Mohamed;Park, Justyn;Lim, Hee Jin;Kook, Yoon-Ah;Han, Seong Ho
    • The korean journal of orthodontics
    • /
    • v.48 no.4
    • /
    • pp.224-235
    • /
    • 2018
  • Objective: The purpose of this study was to compare the skeletal, dental, and soft-tissue treatment effects of nonextraction therapy using the modified C-palatal plate (MCPP) to those of premolar extraction (PE) treatment in adult patients with Class II malocclusion. Methods: Pretreatment and posttreatment lateral cephalographs of 40 adult patients with Class II malocclusion were retrospectively analyzed. The MCPP group comprised 20 patients treated with total arch distalization of the maxillary arch while the PE group comprised 20 patients treated with four PE. Fifty-eight linear and angular measurements were analyzed to assess the changes before and after treatment. Descriptive statistics, paired t-test, and multivariate analysis of variance were performed to evaluate the treatment effects within and between the two groups. Results: The MCPP group presented 3.4 mm of retraction, 1.0 mm of extrusion, and $7.3^{\circ}$ lingual inclination of the maxillary central incisor. In comparison, the PE group displayed greater amount of maxillary central incisor retraction and retroclination, mandibular incisor retraction, and upper lip retraction (5.3 mm, $14.8^{\circ}$, 5.1 mm, and 2.0 mm, respectively; p < 0.001 for all). In addition, the MCPP group showed 4.0 mm of distalization and 1.3 mm of intrusion with $2.9^{\circ}$ distal tipping of the maxillary first molars. Conclusions: These findings suggest the MCPP is an effective distalization appliance in the maxillary arch. The amount of incisor retraction, however, was significantly higher in the PE group. Therefore, four PE may be recommended when greater improvement of incisor position and soft-tissue profile is required.

ORTHODONTIC TRACTION AFTER THE TRAUMATIC INTRUSION OF UPPER CENTRAL INCISOR (외상에 의하여 함입된 상악 중절치의 교정적 견인)

  • Han, Yoon-Beum;Lee, Jae-Ho;Choi, Hyung-Jun;Sohn, Hyung-Kyu;Kim, Seong-Oh;Song, Je-Seon;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.2
    • /
    • pp.293-297
    • /
    • 2009
  • Traumatic intrusion is a type of injury that involves axial displacement of a tooth toward the alveolar bone. Its occurance is relatively rare compared to other types of luxation in permanent dentition. It is more common in boys than in girls, and most common etiology of intrusion is fallen down. Various complication may occur following traumatic intrusion, such as pulp necrosis, root resorption, pulp obliteration and marginal bone loss. In addition, traumatic intrusion is commonly combined with hard or soft tissue injuries. Therefore, it is difficult to establish proper treatment plan. Choice of treatment for an intruded tooth by trauma include waiting for spontaneous re-eruption, orthodontic repositioning, and surgical repositioning. In this case, we repositioned the intruded central incisor using orthodontic traction, in a six-year old girl, which failed to re-erupt spontaneously.

  • PDF

ROOT MALFORMATION OF PERMANENT INCISORS BY ALVEOLAR BONE FRACTURE (치조골 골절을 동반한 유치열기 외상에 의한 영구절치의 치근 형성 이상)

  • Ji, Eun-Hye;Choi, Hyung-Jun;Choi, Byung-Jai;Son, Heung-Kyu;Kim, Seung-Hye;Song, Je-Seon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.3
    • /
    • pp.290-295
    • /
    • 2011
  • During tooth formation, tooth development can be affected by physical action or metabolic changes around dental follicle. Especially trauma to primary dentition is the most representative physical factor that can cause development disorders of succedaneous tooth. Enamel hypoplasia and crown discoloration of succedaneous tooth are common complications of trauma. And impaction, ectopic eruption, arrest of root formation and root dilaceration of succedaneous tooth are rare. In this case, a 6-year and 5-month-old female patient visited for dental evaluation after trauma. She was diagnosed with alveolar bone fracture near upper front teeth, extrusion of the upper right and left primary central incisors, intrusion of the upper right primary lateral incisor, and palatal luxation of the upper left primary lateral incisor. Upper right and left primary central incisors with severe mobility were extracted, with gingival suture on the day of the visit. During 24 months check up, root dilacerations were found near the cemento enamel junction in the upper lateral incisors and arrests of root formation were found on the coronal 1/3 of the root in the upper central incisors. Although alveolar bone fracture is rare type of trauma in children, a thorough examination of alveolar bone is essential for prognosis and following treatment in patients with trauma.