• Title/Summary/Keyword: Upper bound method

Search Result 344, Processing Time 0.023 seconds

Extraction of Sternocleidomastoid Muscle for Ultrasound Images of Cervical Vertebrae (경추 초음파 영상에서 흉쇄유돌근 추출)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2321-2326
    • /
    • 2011
  • Cervical vertebrae are a complex structure and an important part of human body connecting the head and the trunk. In this paper, we propose a method to extract sternocleidomastoid muscle from ultrasonography images of cervical vertabrae automatically. In our method, Region of Interests(ROI) is extracted first from an ultrasonography image after removing unnecessary auxiliary information such as metrics. Then we apply Ends-in search stretching algorithm in order to enhance the contrast of brightness. Average binarization is then applied to those pixels which its brightness is sufficiently large. The noise part is removed by image processing algorithms. After extracting fascia encloses sternocleidomastoid muscle, target muscle object is extracted using the location information of fascia according to the number of objects in the fascia. When only one object is to be extracted, we search downward first to extract the target muscle area and then search from right to left to extract the area and merge them. If there are two target objects, we extract first from the upper-bound of higher object to the lower-bound of lower object and then remove the fascia of the target object area. Smearing technique is used to restore possible loss of the fat area in the process. The thickness of sternocleidomastoid muscle is then calculated as the maximum thickness of those extracted objects. In this experiment with 30 real world ultrasonography images, the proposed method verified its efficacy and accuracy by health professionals.

Free Vibration Analysis of Thick Circular Ring from Three-Dimensional Analysis (두꺼운 원형링의 3차원적 자유진동해석)

  • 양근혁;강재훈;채영호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.609-617
    • /
    • 2002
  • A three-dimensional(3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, circular rings with isosceles trapezoidal and triangular cross-sections. Displacement components u/sub s/, u/sub z/, and u/sub θin the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the ψ and z directions. Potential(strain) and kinetic energies of the circular ring are formulated, and upper bound values of the frequencies we obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for the circular rings with isosceles trapezoidal and equilateral triangular cross-sections having completely free boundaries. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the rings. The method is applicable to thin rings, as well as thick and very thick ones.

A Method of BDD Restructuring for Efficient MCS Extraction in BDD Converted from Fault Tree and A New Approximate Probability Formula (고장수목으로부터 변환된 BDD에서 효율적인 MCS 추출을 위한 BDD 재구성 방법과 새로운 근사확률 공식)

  • Cho, Byeong Ho;Hyun, Wonki;Yi, Woojune;Kim, Sang Ahm
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.711-718
    • /
    • 2019
  • BDD is a well-known alternative to the conventional Boolean logic method in fault tree analysis. As the size of fault tree increases, the calculation time and computer resources for BDD dramatically increase. A new failure path search and path restructure method is proposed for efficient calculation of CS and MCS from BDD. Failure path grouping and bottom-up path search is proved to be efficient in failure path search in BDD and path restructure is also proved to be used in order to reduce the number of CS comparisons for MCS extraction. With these newly proposed methods, the top event probability can be calculated using the probability by ASDMP(Approximate Sum of Disjoint MCS Products), which is shown to be equivalent to the result by the conventional MCUB(Minimal Cut Upper Bound) probability.

Automatic False-Alarm Labeling for Sensor Data

  • Adi, Taufik Nur;Bae, Hyerim;Wahid, Nur Ahmad
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • A false alarm, which is an incorrect report of an emergency, could trigger an unnecessary action. The predictive maintenance framework developed in our previous work has a feature whereby a machine alarm is triggered based on sensor data evaluation. The sensor data evaluator performs three essential evaluation steps. First, it evaluates each sensor data value based on its threshold (lower and upper bound) and labels the data value as "alarm" when the threshold is exceeded. Second, it calculates the duration of the occurrence of the alarm. Finally, in the third step, a domain expert is required to assess the results from the previous two steps and to determine, thereby, whether the alarm is true or false. There are drawbacks of the current evaluation method. It suffers from a high false-alarm ratio, and moreover, given the vast amount of sensor data to be assessed by the domain expert, the process of evaluation is prolonged and inefficient. In this paper, we propose a method for automatic false-alarm labeling that mimics how the domain expert determines false alarms. The domain expert determines false alarms by evaluating two critical factors, specifically the duration of alarm occurrence and identification of anomalies before or while the alarm occurs. In our proposed method, Hierarchical Temporal Memory (HTM) is utilized to detect anomalies. It is an unsupervised approach that is suitable to our main data characteristic, which is the lack of an example of the normal form of sensor data. The result shows that the technique is effective for automatic labeling of false alarms in sensor data.

Geometric Processing for Freeform Surfaces Based on High-Precision Torus Patch Approximation (토러스 패치 기반의 정밀 근사를 이용한 자유곡면의 기하학적 처리)

  • Park, Youngjin;Hong, Q Youn;Kim, Myung-Soo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.93-103
    • /
    • 2019
  • We introduce a geometric processing method for freeform surfaces based on high-precision torus patch approximation, a new spatial data structure for efficient geometric operations on freeform surfaces. A torus patch fits the freeform surface with flexibility: it can handle not only positive and negative curvature but also a zero curvature. It is possible to precisely approximate the surface regardless of the convexity/concavity of the surface. Unlike the traditional method, a torus patch easily bounds the surface normal, and the offset of the torus becomes a torus again, thus helps the acceleration of various geometric operations. We have shown that the torus patch's approximation accuracy of the freeform surface is high by measuring the upper bound of the two-sided Hausdorff distance between the freeform surface and set of torus patches. Using the method, it can be easily processed to detect an intersection curve between two freeform surfaces and find the offset surface of the freeform surface.

An Interval Travel Demand Estimation Method (구간추정법을 이용한 교통수요추정)

  • Lee, Seung-Jae;Kim, Yong-Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.81-88
    • /
    • 2008
  • This paper presents the travel demand estimation using interval estimation methods during the trip generation stage, and then followed the other three stages of the four stage trip estimation. We have used real data of Dae-jun City. To estimate travel demand using the interval estimation method, a reliability level was set to 95% by a upper bound value, a middle value and a lower bound value. The four stage traffic demand analysis procedure was equally applied and finally interval traffic was estimated. The result showed a difference between maximum values and middle values depending on the destination during the trip generation stage. It depends on an explanation ability of regression analysis. Most of interval estimation ratio resulted in the traffic assignment stage showed ${\pm}5{\sim}18%$ difference on the average and ${\pm}30{\sim}50%$ at the most.

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

Growth and characterization of CdTe single crystals by vertical Bridgman method (수직 Bridgman법에 의한 CdTe 단결정의 성장과 특성)

  • 정용길;신호덕;엄영호;박효열;진광수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.220-228
    • /
    • 1996
  • CdTe single crystals were grown by vertical Bridgman method using double furnace with two siliconit heating elements. When the peak temperature of the upper furnace was fixed at $1150^{\circ}C$ and that of the lower furnace was $800^{\circ}C$, the temperature gradient was about $22.5^{\circ}C$/cm. The lattice constant $a_0$ was $6.482\AA$ from the X-ray diffraction and the band gap energy obtained from the optical absorption experiment at room temperature was 1.478 eV. PL spectrum showed that the bound exciton emission peak was resolved into ($A^0,X$) (1.5902, 1.5887 eV), ($h\;D^0$) (1.5918 eV) and ($D^0,X$ (1.5928, 1.5932 eV), and we have also calculated binding energy and ionization energy of the neutral donor and acceptor.

  • PDF

Fractionation of Iron in Rice Leaf Tissue (벼잎의 철분별 정량)

  • Park, H.;Chun, J.K.;Lee, C.Y.
    • Applied Biological Chemistry
    • /
    • v.14 no.3
    • /
    • pp.177-182
    • /
    • 1971
  • A new method for the measure of iron pools using 0.02M EDTA and $Na_2S_2O_4$ was tested on Akagare diseased and healthy rice leaf tissue 1) The proposed method could fraction iron into four fractions; ferrous iron($Fe^{++}$), ferric iron($Fe^{+++}$) precipitated iron(PFe) and bound iron(BFe) well indicating the physiological status of tissue. 2) The pattern of iron pools appears to be $Fe^{+++}>PFe>BFe>Fe^{++}$ in most physiologically favorable status of iron, $PFe>Fe^{+++}>BFe>Fe^{++}$ in favorable status, $BFe>Fe^{+++}>PFe>Fe^{++}$ in unfavorable status and $BFe>PFe>Fe^{+++}>Fe^{++}$ in toxic status. 3) The percentage of each fraction to total iron was less than 10 for $Fe^{++}$, 20 to 40 for $Fe^{+++}$ and PFe and 20 to 50 for BFe. 4) Ferrous iron was always higher in upper half leaf, the appearance of which is less healthier than lower half indicating that there is more active metabolic system in which ferrous iron is involved.

  • PDF

Three-Dimensional Vibration Analysis of Thick Shells of Revolution (두꺼운 축대칭 회전쉘의 3차원적 진동해석)

  • 강재훈;양근혁;장경호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.399-407
    • /
    • 2002
  • A three-dimensional method of analysis is presented for determining the free vibration frequencies and mode shapes of hollow bodies of revolution (i.e., thick shells), not limited to straight line generators or constant thickness. The middle surface of the shell may have arbitrary curvatures, and the wall thickness may vary arbitrarily. Displacement components$U_\Phi, U_z, U_\theta$ in the meridional, normal and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in$\theta$, and algebraic polynomials in the$\Phi$and z directions. Potential(strain) and kinetic energies of the entire body are formulated, and upper bound values of the frequencies are obtained by minimizing the frequencies. As the degrees of the polynomials are increased, frequencies converge to the exact values. Novel numerical results are presented for two types of thick conical shells and thick spherical shell segments having linear thickness variations. Convergence to four digit exactitude is demonstrated for the first five frequencies of both types of shells. The method is applicable to thin shells, as well as thick and very thick ones.