• 제목/요약/키워드: Upper Guide Structure assembly

검색결과 8건 처리시간 0.018초

유체유발하중을 받는 상부안내구조물의 랜덤진동 및 조화응답해석 (Random Vibration and Harmonic Response Analyses of Upper Guide Structure Assembly to Flow Induced Loads)

  • 지용관;이영신
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.59-68
    • /
    • 2002
  • 원자로 내부구조물의 상부안내구조물집합체는 노심지지배럴과 내부배럴집합체와 함께 원통형의 실린더 구조이며, 유체의 난류하중과 펌프의 맥동하중으로 인한 유체유발하중을 수평방향으로 받는다. 본 논문에서는 이 유체유발하중에 대한 랜덤진동해석과 조화응답해석을 수행한 내용을 기술하였다. 이 해석을 위해 집중질량 보 요소 모델을 사용하였고, 랜덤하중과 펌프맥동하중으로 발생되는 동적응답특성을 평가하였다. 특히 원통형태의 상부안내구조물, 노심지지배럴, 내부배럴집합체 사이에서 형성되는 환형공간의 동수력 연성 효과를 고려하여 모델링 하였고, 상부안내구조물 안쪽에 설치되는 내부배럴집합체의 추가 영향을 검토하였다. 내부배럴집합체의 추가로 인한 하중조건별 최대동적응답은 구조물의 고유진동수에 영향을 받으며, 따라서 구조물의 최대동적응답은 여러 하중 조건별 동적해석 평가를 통해 보수적으로 구하여져야 한다.

APR1400 상부안내구조물 집합체 구조해석 및 측정위치 (Structural Analysis and Measuring Locations of Upper Guide Structure Assembly in APR1400)

  • 고도영;김규형;김성환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.306-311
    • /
    • 2012
  • A reactor vessel internals comprehensive vibration assessment program (RVI CVAP) of an advanced power reactor 1400 (APR1400) is being performed as a non-prototype category-2 type of reactor based on the US Nuclear Regulatory Commission Regulatory Guide (NRC RG) 1.20. The aim of this paper is to present the results of structural response analysis and measuring locations of a upper guide structure (UGS) assembly of the APR1400 reactor. The analysis results of the UGS assembly results show that meet the specified integrity levels of the design acceptance criteria. Also, the measuring locations are set by the analysis results of the UGS assembly and selection criteria of measuring locations prior to this study. These analysis results and measuring locations will be used as fundamental materials to design a measurement system for the APR1400 RVI CVAP.

  • PDF

APR1400 상부안내구조물집합체 구조해석 및 측정위치 선정 (Structural Analysis and Measuring Locations of Upper Guide Structure Assembly in APR1400)

  • 고도영;김규형;김성환
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.49-55
    • /
    • 2013
  • A reactor vessel internals comprehensive vibration assessment program(RVI CVAP) of an advanced power reactor 1400(APR1400) is being performed as a non-prototype category-2 type of reactor based on the US nuclear regulatory commission regulatory guide(NRC RG) 1.20. The aim of this paper is to present the results of structural response analysis and measuring locations of a upper guide structure(UGS) assembly of the APR1400 reactor. The analysis results of the UGS assembly show that the specified integrity levels meet the design acceptance criteria. Also, the measuring locations are determined by the analysis results of the UGS assembly and selection criteria of previous study. These analysis results and measuring locations will be used as a guide to design a measurement system for the APR1400 RVI CVAP.

Measurement of vibration and stress for APR-1400 reactor internals

  • Ko, Do-Young;Kim, Kyu-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.963-970
    • /
    • 2018
  • The U.S. Nuclear Regulatory Commission, Regulatory Guide 1.20 needs to perform a comprehensive vibration assessment program for reactor internals during preoperational and startup testing for nuclear power plants and extended power uprate. Although the measurement program is one of the core programs, it is rarely carried out except for a first-of-a-kind or a unique design. This article describes measurement results of vibration and stress for the comprehensive vibration assessment program for an APR-1400 reactor internals. The measurement was performed at an upper guide structure during the pre-core hot functional test of Shin Kori unit 4 reactor internals because the Shin Kori unit 3 and 4 are the first construction project for the APR-1400, and the upper guide structure assembly was to design change compared with the valid prototype. We confirmed that all measured results are within the test acceptance criteria. It means that the structural integrity of the APR-1400 reactor internals was secured for the flow-induced vibration.

VIBRATION AND STRESS ANALYSIS OF A UGS ASSEMBLY FOR THE APR1400 RVI CVAP

  • Ko, Do-Young;Kim, Kyu-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.817-824
    • /
    • 2012
  • The most important component of a nuclear power plant is its nuclear reactor. Studies on the integrity of reactors have become an important part regarding the safety of a nuclear power plant. The US Nuclear Regulatory Commission Regulatory Guide (NRC RG) 1.20 presents a Comprehensive Vibration Assessment Program (CVAP) to be used to verify the structural integrity of the Reactor Vessel Internals (RVI) for flow-induced vibration prior to commercial operation. However, there are few published studies related to the RVI CVAP. We classified the Advanced Power Reactor 1400 (APR1400) RVI CVAP as a non-prototype category-2 reactor as part of an independent validation of its design. The aim of this paper is to present the results of structural response analyses of the Upper Guide Structure (UGS) assembly of the APR1400 reactor. These results show that the UGS and the Inner Barrel Assembly (IBA) meet the specified integrity levels of the design acceptance criteria. The vibration and stress analysis results in this paper will be used as basic information to select measurement locations of the vibration and stress for the APR1400 RVI CVAP.

Dynamic characteristics assessment of reactor vessel internals with fluid-structure interaction

  • Je, Sang Yun;Chang, Yoon-Suk;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1513-1523
    • /
    • 2017
  • Improvement of numerical analysis methods has been required to solve complicated phenomena that occur in nuclear facilities. Particularly, fluid-structure interaction (FSI) behavior should be resolved for accurate design and evaluation of complex reactor vessel internals (RVIs) submerged in coolant. In this study, the FSI effect on dynamic characteristics of RVIs in a typical 1,000 MWe nuclear power plant was investigated. Modal analyses of an integrated assembly were conducted by employing the fluid-structure (F-S) model as well as the traditional added-mass model. Subsequently, structural analyses were carried out using design response spectra combined with modal analysis data. Analysis results from the F-S model led to reductions of both frequency and Tresca stress compared to those values obtained using the added-mass model. Validation of the analysis method with the FSI model was also performed, from which the interface between the upper guide structure plate and the core shroud assembly lug was defined as the critical location of the typical RVIs, while all the relevant stress intensities satisfied the acceptance criteria.

APR1400 원자로내부구조물 종합진동평가 응답측정시험 허용기준 (Response Instrumentation Test Acceptance Criteria for APR1400 RVI CVAP)

  • 고도영;김규형;김성환
    • 한국소음진동공학회논문집
    • /
    • 제21권11호
    • /
    • pp.1036-1042
    • /
    • 2011
  • APR1400 RVI CVAP using the non-prototype category II is being conducted to verify integrity of the RVI design and to secure the CVAP technology. The measurement programs are to confirm vibration analysis results for reactor internals during pre-operational and initial startup testing and to determine the safety margin. One of the important basis for the measurement programs is test acceptance criteria. Therefore, this paper is on establishment of response instrumentation test acceptance criteria for APR1400 RVI CVAP. The established acceptance criteria show that the stress criteria of APR1400 RVI are more conservative values than those of the valid prototype plant(Palo Verde unit 1) and, the displacement criteria of the inner barrel assembly and the upper guide structure were established to 0.03 in and 0.01 in, respectively.

Discharge header design inside a reactor pool for flow stability in a research reactor

  • Yoon, Hyungi;Choi, Yongseok;Seo, Kyoungwoo;Kim, Seonghoon
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2204-2220
    • /
    • 2020
  • An open-pool type research reactor is designed and operated considering the accessibility around the pool top area to enhance the reactor utilization. The reactor structure assembly is placed at the bottom of the pool and filled with water as a primary coolant for the core cooling and radiation shielding. Most radioactive materials are generated from the fuel assemblies in the reactor core and circulated with the primary coolant. If the primary coolant goes up to the pool surface, the radiation level increases around the working area near the top of the pool. Hence, the hot water layer is designed and formed at the upper part of the pool to suppress the rising of the primary coolant to the pool surface. The temperature gradient is established from the hot water layer to the primary coolant. As this temperature gradient suppresses the circulation of the primary coolant at the upper region of the pool, the radioactive primary coolant rising up directly to the pool surface is minimized. Water mixing between these layers is reduced because the hot water layer is formed above the primary coolant with a higher temperature. The radiation level above the pool surface area is maintained as low as reasonably achievable since the radioactive materials in the primary coolant are trapped under the hot water layer. The key to maintaining the stable hot water layer and keeping the radiation level low on the pool surface is to have a stable flow of the primary coolant. In the research reactor with a downward core flow, the primary coolant is dumped into the reactor pool and goes to the reactor core through the flow guide structure. Flow fields of the primary coolant at the lower region of the reactor pool are largely affected by the dumped primary coolant. Simple, circular, and duct type discharge headers are designed to control the flow fields and make the primary coolant flow stable in the reactor pool. In this research, flow fields of the primary coolant and hot water layer are numerically simulated in the reactor pool. The heat transfer rate, temperature, and velocity fields are taken into consideration to determine the formation of the stable hot water layer and primary coolant flow. The bulk Richardson number is used to evaluate the stability of the flow field. A duct type discharge header is finally chosen to dump the primary coolant into the reactor pool. The bulk Richardson number should be higher than 2.7 and the temperature of the hot water layer should be 1 ℃ higher than the temperature of the primary coolant to maintain the stability of the stratified thermal layer.