• Title/Summary/Keyword: Uplift Test

Search Result 120, Processing Time 0.028 seconds

Comparision Analysis of Model Test for Prediction of Uplift Resistance in the Reclaimed Land Greenhouse Foundation (간척지 온실기초 나무말뚝의 인발저항력 예측을 위한 실내모형시험 결과 비교·분석)

  • Song, Chang Seob;Kim, Myeong Hwan;Jang, Ung Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.45-52
    • /
    • 2016
  • The object of this paper was to evaulate modified proposed design equation in model test result in order to estimate uplift-resistance of timber pile of reclaimed land greenhouse foundation. Uplift resistance result of model test was increased to according to increased of contact area. Uplift-resistance result of field test tend to lineary increased to according to increased of embedment depth and contact area. Results of field uplift-resistance was evaluate compare with modified proposed design equation results of model test and Effective stress method. As the Effective stress method tend to underestimate, modified proposed design equation results of model test tend to similar type. As the contact area increase, difference between field uplift-resistance results and modified proposed design equation results of model test was considered uplift-speed.

A review on uplift response of symmetrical anchor plates embedded in reinforced sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.187-194
    • /
    • 2013
  • The most soil anchor works have been concerned with the uplift problem on embedded in non-reinforced soils under pullout test. Symmetrical anchor plates are a foundation system that can be resisting tensile load with the support of around soil in which symmetrical anchor plate is embedded. Engineers and authors proved that the uplift response can be improved by grouping the symmetrical anchor plates, increasing the unit weight, embedment ratio and the size of symmetrical anchor plates. Innovation of geosynthetics in the field of geotechnical engineering as reinforcement materials found to be possible solution in symmetrical anchor plate responses. Unfortunately the importance of reinforcement in submergence has received very little attention by researchers. In this paper, provision of tensile reinforcement under embedded conditions has been studied through uplift experiments on symmetrical anchor plates by few researchers. From the test results it has been showed that the provision of geogrid reinforcement system enhances the uplift response substantially under uplift test although other results are such as increase the ultimate uplift response of symmetrical anchor plate embedded using geosynthetic and Grid Fixed Reinforced (GFR) and symmetrical anchor plate improvement is very dependent on geosynthetic layer length and increases significantly until the amount of beyond that further increase in the layer length does not show a significant contribution in the anchor response.

Study on Pullout Behavior and Determination of Ultimate Uplift Capacity of Pile Driven in Small Pressured Chamber (소형 압력 토조내에 타입된 말뚝의 인발 거동과 극한 인발 지지력 결정에 관한 연구)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.19-28
    • /
    • 1995
  • Based on the various test data acquired in the field, the large pressure chamber and the small pressure chamber, uplift behaviors and method of determining the ultimate uplift capacity of pile driven in small pressure chamber were studied. After uplift pile experienced 2 or 3 sudden slip due to increase of uplift load, complete pullout failure was occurred. Thus, it appears that the ultimate uplift capacity could be identified as the load at displacement where first slip occurs. The ultimate uplift capacity might be determined in every test and the disturbance after first uplift test could be recovered by adding one blow of the drop hammer, which had to depend on the model pile capacity.

  • PDF

Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor

  • Zhu, Hong-Hu;Mei, Guo-Xiong;Xu, Min;Liu, Yi;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.165-181
    • /
    • 2014
  • In the past decade, different types of underreamed ground anchors have been developed for substructures requiring uplift resistance. This article introduces a new type of umbrella-shaped anchor. The uplift behavior of this ground anchor in clay is studied through a series of laboratory and field uplift tests. The test results show that the umbrella-shaped anchor has higher uplift capacity than conventional anchors. The failure mode of the umbrella-shaped anchor in a large embedment depth can be characterized by an arc failure surface and the dimension of the plastic zone depends on the anchor diameter. The anchor diameter and embedment depth have significant influence on the uplift behavior. A finite element model is established to simulate the pullout of the ground anchor. A parametric study using this model is conducted to study the effects of the elastic modulus, cohesion, and friction angle of soils on the load-displacement relationship of the ground anchor. It is found that the larger the elastic modulus and the shear strength parameters, the higher the uplift capacity of the ground anchor. It is suggested that in engineering design, the soil with stiffer modulus and higher shear strength should be selected as the bearing stratum of this type of anchor.

Vertical uplift of suspension equipment due to hanger slackening: Experimental and numerical investigation

  • Yang, Zhenyu;He, Chang;Mosalam, Khalid M.;Xie, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.735-745
    • /
    • 2022
  • The suspension thyristor valve can generate tremendous vertical acceleration responses in layers and large tension forces in hangers. A shaking table test of a scaled-down model of thyristor valves suspended on a hall building is performed to qualify the risk of vertical uplift of two representative types of valves, the chain valve and the rigid valve. Besides, an analytical model is established to investigate the source of the slackening of hangers. The test results show that the valves frequently experience a large vertical acceleration response. The soft spring joint can significantly reduce acceleration, but is still unable to prevent vertical uplift of the chain valve. The analytical model shows a stiffer roof and inter-story connection both contribute to a higher risk of vertical uplift for a rigid valve. In addition, the planar eccentricity and short hangers, which result in torsional motion of the valve, increase the possibility of vertical uplift for a chain valve. Therefore, spring joints with additional viscous dampers and symmetric layout in each layer are recommended for the rigid and chain valve, respectively, to prevent the uplift of valves.

Comparative field tests on uplift behavior of straight-sided and belled shafts in loess under an arid environment

  • Qian, Zeng-zhen;Lu, Xian-long;Yang, Wen-zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.141-160
    • /
    • 2016
  • This study elucidates the uplift behaviors of the straight-sided and belled shafts. The field uplift load tests were carried out on 18 straight-sided and 15 belled shafts at the three collapsible loess sites under an arid environment on the Loess Plateau in Northwest China. Both the site conditions and the load tests were documented comprehensively. In general, the uplift load-displacement curves of the straight-sided and belled shafts approximately exhibited an initial linear, a curvilinear transition, and a final linear region, but did not provide a well defined peak or asymptotic value of the load, and therefore their uplift resistances should be interpreted from the load test results using an appropriate criterion. Nine representative uplift resistance interpretation criteria were used to define the "interpreted failure load" for each of the load tests, and all of these interpreted uplift resistances were normalized by the failure threshold, $T_{L2}$, obtained using the $L_1-L_2$ method. These load test data were compared statistically and graphically. For the straight-sided and belled shafts, the normalized uplift load-displacement curves were respectively established by the plots that related the mean interpreted uplift resistance ratio against the mean displacement at the corresponding interpreted criteria, and the comparisons of the normalized load-displacement curves were made. Specific recommendations for the designs of uplift belled and straight-sided shafts in the loess were given, in terms of both capacity and displacement.

Characteristics of Field Uplift Tests of Continuous Greenhouse using the Load Control Method (하중 제어법을 이용한 파이프 줄기초의 현장 인발저항 특성)

  • Lim, Seong-Yoon;Kim, Myeong-Hwan;Kim, Yu-Yong;Yu, Seok-Chul;Kim, Seok-Jin;Lim, Jae-Sam
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.105-111
    • /
    • 2018
  • Institutional inertia anti-disaster standard was presented mainly on the upper surface, it is necessary to improve to the soil type standard and uplift the resistance standard greenhouse that are vulnerable to strong winds. In this study, we carried out a field test using the load control method in order to evaluate the uplift resistance of continuous foundation of greenhouse with different depths of the rafters. Institutional inertia anti-disaster standard of greenhouse foundation did not protect the greenhouse structure from the damages caused by strong winds and heavy snow. Therefore, field tests for behavior characteristics of continuous greenhouse foundation were carried out to ensure stable facility cultivation. The field test condition was evaluated using different embedded depth as follows: 30cm, 40cm, 50cm and spacing 50cm, 60cm, 70 cm. As a result of the uplift resistance field tests using the load control method, the minimum uplift resistance was found to be over 90kg and uplift resistance displacement was 9.4mm. Uplift resistance of the continuous greenhouse foundation was in the range of 90-180 kg according to embedded depth and spacing. Using the test condition, there was no constant trend in the uplift resistance.

Characteristics of Uplift Capacity of a Embedded Foundation and Soil Type (매입기초와 토질에 따른 인발저항력 특성)

  • Lim, SeongYoon;Kim, YuYoung;Yu, SeokChul;Kim, MyeongHwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.23-30
    • /
    • 2019
  • In this study, we evaluated the applicability of proper embedded depth of fillings by examining the uplift resistance using spiral foundation and top base foundation. As a result of the model test, the maximum uplift resistance increased with the embedded depth. The maximum uplift resistance of each region was found to be 50cm depth. The spiral foundation was 335.14N of Sancheong, 312.32N of Seongju, 403.94N of Wanju, and the top base foundation was 745.06N of Sancheong, 1028.82N of Seongju and 950.76N of Wanju. The yield point after the elastic section in the stress-displacement graph of the top base foundation was calculated as the maximum uplift resistance. For this reason, farmers do not actually use top bases foundation. Therefore, it was considered that the additional load increase due to slip connector will not occur. Model test results show that the maximum uplift resistance increases with the purlinss installed under the ground. Therefore, additional comparative studies through purlins installation will be needed.

Model studies of uplift capacity behavior of square plate anchors in geogrid-reinforced sand

  • Keskin, Mehmet S.
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.595-613
    • /
    • 2015
  • An experimental investigation into the uplift capacity of horizontal square plate anchors in sand with and without geogrid reinforcement is reported. The parameters investigated are the effect of the depth of the single layer of geogrid, vertical spacing of geogrid layers, number of geogrid layers, length of geogrid layers, the effects of embedment depth, and relative density of sand. A series of three dimensional finite element analyses model was established and confirmed to be effective in capturing the behaviour of plate anchor-reinforced sand by comparing its predictions with experimental results. The results showed that the geogrid reinforcement had a considerable effect on the uplift capacity of horizontal square plate anchors in sand. The improvement in uplift capacity was found to be strongly dependent on the embedment depth and relative density of sand. A satisfactory agreement between the experimental and numerical results on general trend of behaviour and optimum geometry of reinforcement placement is observed. Based on the model test results and the finite element analyses, optimum values of the geogrid parameters for maximum reinforcing effect are discussed and suggested.

Square plates as symmetrical anchor plates under uplift test in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.593-612
    • /
    • 2014
  • The uplift response of symmetrical square anchor plates has been evaluated in physical model tests and numerical simulations using Plaxis. The behavior of square anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm Length square plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for square anchor plates. Numerical analysis using square anchor plates was conducted based on the hardening soil model (HSM). The research has shown that the finite element results are higher than the experimental findings in loose sand.