• 제목/요약/키워드: Uplift Load

검색결과 102건 처리시간 0.025초

Comparative field tests on uplift behavior of straight-sided and belled shafts in loess under an arid environment

  • Qian, Zeng-zhen;Lu, Xian-long;Yang, Wen-zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.141-160
    • /
    • 2016
  • This study elucidates the uplift behaviors of the straight-sided and belled shafts. The field uplift load tests were carried out on 18 straight-sided and 15 belled shafts at the three collapsible loess sites under an arid environment on the Loess Plateau in Northwest China. Both the site conditions and the load tests were documented comprehensively. In general, the uplift load-displacement curves of the straight-sided and belled shafts approximately exhibited an initial linear, a curvilinear transition, and a final linear region, but did not provide a well defined peak or asymptotic value of the load, and therefore their uplift resistances should be interpreted from the load test results using an appropriate criterion. Nine representative uplift resistance interpretation criteria were used to define the "interpreted failure load" for each of the load tests, and all of these interpreted uplift resistances were normalized by the failure threshold, $T_{L2}$, obtained using the $L_1-L_2$ method. These load test data were compared statistically and graphically. For the straight-sided and belled shafts, the normalized uplift load-displacement curves were respectively established by the plots that related the mean interpreted uplift resistance ratio against the mean displacement at the corresponding interpreted criteria, and the comparisons of the normalized load-displacement curves were made. Specific recommendations for the designs of uplift belled and straight-sided shafts in the loess were given, in terms of both capacity and displacement.

Characterization and uncertainty of uplift load-displacement behaviour of belled piers

  • Lu, Xian-long;Qian, Zeng-zhen;Zheng, Wei-feng;Yang, Wen-zhi
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.211-234
    • /
    • 2016
  • A total of 99 full-scale field load tests at 22 sites were compiled for this study to elucidate several issues related to the load-displacement behaviour of belled piers under axial uplift loading, including (1) interpretation criteria to define various elastic, inelastic, and "failure" states for each load test from the load-displacement curve; (2) generalized correlations among these states and determinations to the predicted ultimate uplift resistances; (3) uncertainty in the resistance model factor statistics required for reliability-based ultimate limit state (ULS) design; (4) uncertainty associated with the normalized load-displacement curves and the resulting model factor statistics required for reliability-based serviceability limit state (SLS) design; and (5) variations of the combined ULS and SLS model factor statistics for reliability-based limit state designs. The approaches discussed in this study are practical and grounded realistically on the load tests of belled piers with minimal assumptions. The results on the characterization and uncertainty of uplift load-displacement behaviour of belled piers could be served as to extend the early contributions for reliability-based ULS and SLS designs.

점토지반에 타입된 콘크리트 말뚝의 인발저항 및 크리프 거동 (Uplift Capacity and Creep Behavior of Concrete Pile Driven in Clay)

  • 신은철;김종인;박정준;이학주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.371-378
    • /
    • 2001
  • The working load at pile is sometimes subjected to not only compression load but also lateral load and uplift forces. Pile foundation is essential and uplift load can be applied because of buoyancy, a typhoon, wind or seismic forces. This study was carried out to determine the uplift capacity of concrete pile foundation driven in clay. Pile was driven in clay, between pile and clay adhesion factor was estimated, and it is the mean value between the cast-in-situ-pile and steel pipe pile. When pile foundation is loaded for long time, creep behavior occurs. The behavior of creep is originated from the clay creep contacted with pile. The creep behavior of pile foundation embedded in clay is heavily depended on the thickness of clay around the pile shaft, pore water pressure in clay, and creep behavior of clay.

  • PDF

조밀한 사질토지반에서 경사로 설치된 그룹 마이크로파일의 인발지지력 평가방법 (Evaluation Method for Uplift Load-carrying Capacity of Inclined Group Micropiles in Dense Sand)

  • 경두현;김가람;김인철;이준환
    • 한국지반공학회논문집
    • /
    • 제33권1호
    • /
    • pp.67-77
    • /
    • 2017
  • 본 연구에서는 단일 마이크로파일의 인발재하시험과 그룹 마이크로파일 인발재하시험 결과를 토대로 마이크로파일의 설치각도와 설치간격에 따른 인발지지특성을 확인하였다. 또한 FHWA(2005)의 방법과 Madhav(1987)의 방법을 토대로 지지력평가방법을 제안하고, 시험결과와 비교하여 그 적정성을 검토하였다. 시험결과, 단일 및 그룹마이크로파일의 인발지지력이 설치각도 30도까지 증가하는 것으로 나타났으며, 설치간격이 증가함에 따라 그 값이 다소 증가되는 것으로 나타났다. 제안된 FHWA(2005)의 방법의 경우, 수정된 방법을 통한 예측 값이 설치각도 15도의 5D조건까지 유사한 것으로 나타났다. 반면, 제안된 Madhav(1987)의 방법의 경우에는 모든 설치조건에서의 측정값과 수정된 방법을 통한 예측 값이 비교적 유사한 것으로 나타났다.

근입비와 인발속도가 콘크리트 항타말뚝의 인발부착계수에 미치는 영향 (Effect of Embedment Ratio and Loading Rate on Uplift Adhesion Factor of Concrete Driven Pile)

  • 김종인;박정준;신은철
    • 한국철도학회논문집
    • /
    • 제8권4호
    • /
    • pp.367-371
    • /
    • 2005
  • Pile foundations are utilized when soil is so weak that shallow foundations are not suitable or point load is concentrated in small area. Such soil can be formed by the land reclamation works which have extensively been executed along the coastal line of southern and western parts of the Korean Peninsula. The working load at pile is sometimes subjected to not only compression load but also lateral load sad uplift forces. But in most of the practice design, uplift capacity of pile foundation is not considered and estimation of uplift capacity is presumed on the compression skin friction. This study was carried out to determine that the effect of embedment ratio and loading rate on uplift adhesion factor of concrete pile driven in clay. Based on the test results, the critical embedment ratio is about 9. Adhesion factor is constant under the critical embedment ratio, and decreasing over the critical embedment ratio. Also, adhesion factor is increased with the loading rate is increased.

풍화암에 근입된 영구 앵커의 극한인발력 (Ultimate Uplift Capacity of Permanent Anchor Embedded in Weathered Rock)

  • 유남재;박병수;정길수;김진황
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.195-203
    • /
    • 2001
  • The purpose of this study is to estimate ultimate uplift capacity of permanent anchor which was cast into weathered rock. The ultimate uplift capacity was estimated from the load-displacement curve of four different anchors which have different bond length. The creep test was performed for 15minutes under the maximum load of each step in order to understand the load-transfer property of permanent anchor and to decide which anchor to choose. The destruction range of soil due to the changes in load was estimated by installing dial gauge on the ground which was cast into the weathered rock. Ultimately, the study on the behavior of the anchor case into the weathered rock was performed by comparing and analyzing the estimated result of the UUC obtained by the full scale pull out test in the field with the exsting theoretical and practical results of soil and rock anchor.

  • PDF

Centrifuge modelling of rock-socketed drilled shafts under uplift load

  • Park, Sunji;Kim, Jae-Hyun;Kim, Seok-Jung;Park, Jae-Hyun;Kwak, Ki-Seok;Kim, Dong-Soo
    • Geomechanics and Engineering
    • /
    • 제24권5호
    • /
    • pp.431-441
    • /
    • 2021
  • Rock-socketed drilled shafts are widely used to transfer the heavy loads from the superstructure especially in mountainous area. Extensive research has been done on the behavior of rock-socketed drilled shafts under compressive load. However, little attention has been paid to uplift behavior of drilled shaft in rock, which govern the overall behavior of the foundation system. In this paper, a series of centrifuge tests have been performed to investigate the uplift response of rock-socketed drilled shafts. The pull-out tests of drilled shafts installed in layered rocks having various strengths were conducted. The load-displacement response, axial load distributions in the shaft and the unit skin friction distribution under pull-out loads were investigated. The effects of the strength of rock socket on the initial stiffness, ultimate capacity and mobilization of friction of the foundation, were also examined. The results indicated that characteristics of rock-socket has a significant influence on the uplift behavior of drilled shaft. Most of the applied uplift load were carried by socketed rock when the drilled shaft was installed in the sand over rock layer, whereas substantial load was carried by both upper and lower rock layers when the drilled shaft was completely socketed into layered rock. The pattern of mobilized shaft friction and point where the maximum unit shaft friction occurred were also found to be affected by the socket condition surrounding the drilled shaft.

하중 제어법을 이용한 파이프 줄기초의 현장 인발저항 특성 (Characteristics of Field Uplift Tests of Continuous Greenhouse using the Load Control Method)

  • 임성윤;김명환;김유용;유석철;김석진;임재삼
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.105-111
    • /
    • 2018
  • Institutional inertia anti-disaster standard was presented mainly on the upper surface, it is necessary to improve to the soil type standard and uplift the resistance standard greenhouse that are vulnerable to strong winds. In this study, we carried out a field test using the load control method in order to evaluate the uplift resistance of continuous foundation of greenhouse with different depths of the rafters. Institutional inertia anti-disaster standard of greenhouse foundation did not protect the greenhouse structure from the damages caused by strong winds and heavy snow. Therefore, field tests for behavior characteristics of continuous greenhouse foundation were carried out to ensure stable facility cultivation. The field test condition was evaluated using different embedded depth as follows: 30cm, 40cm, 50cm and spacing 50cm, 60cm, 70 cm. As a result of the uplift resistance field tests using the load control method, the minimum uplift resistance was found to be over 90kg and uplift resistance displacement was 9.4mm. Uplift resistance of the continuous greenhouse foundation was in the range of 90-180 kg according to embedded depth and spacing. Using the test condition, there was no constant trend in the uplift resistance.

소형 압력 토조내에 타입된 말뚝의 인발 거동과 극한 인발 지지력 결정에 관한 연구 (Study on Pullout Behavior and Determination of Ultimate Uplift Capacity of Pile Driven in Small Pressured Chamber)

  • 최용규
    • 한국지반공학회지:지반
    • /
    • 제11권2호
    • /
    • pp.19-28
    • /
    • 1995
  • 소형 압력 토조(small pressure chamber)를 이용하여 포화된 사질토에 타입된 폐단 강관 말뚝의 인발거동 특성을 연구하였다. 소형 압력 토조 시험에서는 인발 하중이 인발변위와 함께 증가하다가 급작스러운 미끄러짐 변위가 발생되는 현상이 2-3회 반복되다가 완전 인발파괴에 이르게 되는데, 이때 첫번째 미끄러짐 변위가 발생하는 하중의 크기를 극한 인발 지지력으로 정의할 수 있다. 또한, 소형 압력 토조 시험에서는 미세한 시험 조건에 의해서도 극한 인발 지지력의 크기가 50% 이상의 오차를 나타낼 수도 있으므로 모형 지반을 형성할 때마다 인발 재하 시험에 의하여 극한 인발 지지력을 결정하여 사용하는 것이 좋을 것으로 판단되며, 이때 1차 인발 시험에 의해 교란된 지반의 상태는 모형 말뚝의 크기에 적합한 타격에너지를 가해주어 회복시킬 수 있다.

  • PDF

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.