• Title/Summary/Keyword: Uplands

Search Result 75, Processing Time 0.024 seconds

A Survey on the Soil Environments of Alpine Vegetable Housing in Honam Area (호남지역(湖南地域) 고냉채소단지(高冷菜蔬團地)의 토양환경연구(土壤環境硏究))

  • Yoo, Chul-Hyun;Cho, Guk-Hyun;Choi, Jeong-Weon;Park, Keon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.246-253
    • /
    • 1988
  • This survey was carried out to obtain the basic information for the stable high yield of income-crops. Cropping systems, soil morphological and chemical properties were investigated. The obtained results were summarized as follows: 1. In Jinan and Jangsu, cultivated area of radish was 76.5% and.65.4%, respecitively, but in Unbong Chinese Cabbage, 71.1%, by second Crop. 2. In topographycal distribution, the mountain foot slope area in Jinan, Jangsu and Unbong was 69, 77 and 85%, respectively. In the distribution of elevation, semi-Alpine region in Jinan and Unbong was 85 and 69%, respectively, but Alpine region in Jangsu was 62%, of cultivated area. 3. Ploughing depth was 0 to 10 cm in Jinan and Jangsu, and 11 to 15cm, in Unbong. Gravel content class was 4th class in Jinan and 3rd class in Jangsu and Unbong. 4. For the distribution of soil types, normal upland came to 69.2% in Unbong, sandy and skeletal upland, 46.1 % and normal and sandy upland, 39 and 38%, respectively, in Jangsu. 5. The uplands soil classified as the 5th class, with improper for adequate cropping were. 6. For the chemical properties according to topography available phosphate $(-0.344^*)$, Ca $(-0.398^*)$, K $(-0.485^{**})$ and CEC $(-0.325^{**})$ showed the negative significancy with the elevation. 7. Among the variations of chemical properties by continuous cropping, the soil pH $(-0.491^{**})$ and the content of organic matter $(-0.434^{**})$, Ca $(-0.705^{**})$, CEC $(-0.512^{**})$, total nitrogen $(-0.559^{**})$ showed the high negative correlations, while the contents of available phosphate $(0.671^{**})$ and K $(0.543^{**})$ showed the high positive correlations, with the number of years of continuous cropping.

  • PDF

Assessment of Soil Aggregates and Erodibility Under Different Management Practices in the Mountainous Soils (산지에서 영농방법에 따른 토양입단과 침식성 평가)

  • Joo, Jin-Ho;Yang, Jae-E;Kim, Jeong-Je;Jung, Yeong-Sang;Choi, Joong-Dae;Yun, Sei-Young;Ryu, Kwan-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • Soil erosion in the hilly and mountainous uplands in the Daekwanryong area, Kangwon-Do, were investigated through a field plot experiment. The plot size was 15m long and 2.5m wide with the average slope of 12.5 percents. Soil erodibility factor (K), surface coverage (SC), soil aggregate percentage and wind erodibility (I) were evaluated in the mountainous soils under different management practices for corn and potato cultivations. Soil erodibility factor (K) was greater in upper part than in lower part of the plots. Surface coverage (SC) values ranged from 0.01 to 0.84 depending on the amounts of crop residues. Soils having a greater crop residue in surface were less subjected to soil erosion. SC values after corn harvest were 0.4 to 0.8, while those after potato harvest were 0.4 to 0.5, indicating potato might be better than corn for erosion control. Soil aggregate percentages of the experimental plots ranged from 49.7 to 79.8%. Those were higher in potato-cultivated plots with higher surface coverage, organic fertilizer treatment and contour tillage. Soil aggregate percentage of potato-cultivated plots was significantly correlated to crop residue coverage after harvest. The dried soil aggregate percentage, showing the ranges of 26.4 to 56.4%, were higher in the plots with the increased crop residue incorporation. Wind erodibility (I) of the soil was decreased with increasing surface coverage. When soil had 26.4% of the dried aggregate percentage, wind erodibility was estimated to be $183Mgha^{-1}$ which was equivalent to soil loss of $0.5Mg\ha^{-1}day^{-1}$.

  • PDF

Assessment of National Soil Loss and Potential Erosion Area using the Digital Detailed Soil Maps (수치 정밀토양도를 이용한 전국 토양 유실량의 평가 및 침식 위험지역의 분석)

  • Jung, Kang-Ho;Sonn, Yeon-Kyu;Hong, Seok-Young;Hur, Seung-Oh;Ha, Sang-Keon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • This study was performed to estimate the soil loss on a national scale and grade regions with the potential risk of soil erosion. Universal soil loss equation (USLE) for rainfall and runoff erosivity factors (R), cover management factors (C) and support practice factors (P) and revised USLE for soil erodibility factors (K) and topographic factors (LS) were used. To estimate the soil loss, the whole nation was divided into 21,337 groups according to city county, soil phase and land use type. The R factors were high in the southern coast of Gyeongnam and Jeonnam and part of the western coast of Gyeonggi and low in the inland and eastern coast of Gyeongbuk. The K factors were higher in the regions located on the lower streams of rivers and the plain lands of the western coast of Chungnam and Jeonbuk. The average slope of upland areas in Pyeongchang-gun was the steepest of 30.1%. The foot-slope areas from the Taebaek Mountains to the Sobaek Mountains had steep uplands. Total soil loss of Korea was estimated as $50{\times}10^6Mg$ in 2004. The potential risk of soil erosion in upland was the severest in Gyeongnam and the amount of soil erosion was the greatest in Jeonnam. The regions in which annual soil loss was estimated over $50Mg\;ha^{-1}$ were graded as "the very severe" and their acreage was $168{\times}10^3ha$ in 2004. The soil erosion maps of city/county of Korea were made based on digital soil maps with 1:25,000 scale.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF